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Preface

Although some experience of programming the Spectrum in BASIC
would be helpful, this book makes no demand on its readers in terms of
previous knowledge of computers or electronics: all that is required is a
desire to learn. More advanced readers may find that the earlier
chapters are a useful clarification of essential background and a
preparation for the more complex issues dealt with later on.

The greatest benefit will be felt if you read with your computer close
to hand. so that experimenting is naturall y encouraged. Don't be afraid
to wander on your own: the best remembered facts are those discovered
for yourself.

Warning: When entering the programs in this book, please be careful.
The quality of print from computer printers means that some characters
look very similar — commas, in particular, may look very like full stops.
Please ensure that you key in the correct characters.
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CHAPTER 1
Electronics of the Digital Kind

When you discover that the apparently inscrutable performance of
modern computers is achieved by using 'digital electronics', do not be
panicked into assuming that this will make them any harder to
understand than a conventional electronic device such as a radio.
Indeed, if you have tried to comprehend electronics at some time in the
past and struggled to understand such things as sine waves, modulation,
and capacitance. then take heart: the theory behind digital techniques
requires less in the way of abstract concepts or knowledge of
mathematics. It is size (a great deal crammed into a small package) and
speed of operation that make modern computers so powerful.

So what is the difference between digital electronics and the more
conventional kind? Broadly speaking, a digital circuit is only concerned
with the presence or absence of electricity; in other words, whether
parts of itself are ON or OFF. The exact amount of electricity present,
providing it falls within certain limits, is unimportant.

Conventional circuits tend to be much more precise. For example, in
a hi-fi system the quantities of electricity flowing out to the loudspeakers
reflect exactly the changing levels of sound that the circuit is trying to
imitate. In a badly designed system, the levels of electricity may not be
controlled accurately enough, resulting in distortion.

Charles Babbage is sometimes known as the father of modern
computing because he designed the first `Analytic Engine' in the 1830s.
It was indeed an engine; with plungers, levers and cogs interacting in a
visible, tangible way. Comprehending the behaviour of a mechanical
device is easy on the brain because there is nothing abstract to
understand: pulling this lever operates that plunger because they are
attached to each other by a wire which we can see.

In order to come to terms with an electronic device, however, it is
common to envisage a picture of electricity behaving like water, for
instance, or even little men rushing around. There is nothing to be
ashamed of in using these analogies, but they are not accurate enough to
cope with complex models. A circuit consisting of a battery, bulb and
switch can be resolved in these terms, but try to apply your analogy to a
television set and not only will you fail to grasp how it works. you may
begin to doubt the behaviour of water, or even of little men!
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Inside Your Spectrum

The nature of electricity
In order to have a picture of the nature of electricity, it is first necessary
to appreciate a few simple facts about matter. All of these would take
some time to prove, and in the final analysis you would still be taking my
word for it. just as I am taking someone else's. Let us, therefore, accept
that matter, whether it is gas, plastic or orange juice, is made up of
extremely small particles called `atoms', a simple definition of which is
'the smallest particle that can exist'. In the past the definition would
have gone on to say that atoms are indivisible, but we now know that
this is not the case (however, nuclear fission is not the concern of this
book). There are well over a hundred types of atoms, and some are
more common than others.

Materials which consist of only one type of atom are called `elements':
they include such familiar substances as carbon, iron and oxygen. The
atoms of one element differ from those of another by their size and
structure, varying from the simple hydrogen atom to heavyweights such
as uranium. Other substances consist of different types of atom grouped
together, sometimes as a simple mixture of elements, but often as the
result of the atoms bonding together and forming what is known as a
'molecule'. Two atoms of hydrogen, for example, locked together with
one atom of oxygen make up a molecule of water.

Through a long process of educated guesswork. followed up by
experiments to prove their theories true, scientists have established a
picture of what makes up an atom. It is in the construction of the
different types of atom that the key to electricity lies. Each atom
consists of a nucleus of a number of 'protons' and 'neutrons', which is
the so-called 'indivisible core', the prising open of which leads to the
science of particle physics.

Around this core orbit 'electrons'. Each type of atom has a different
requirement of these to make it ideally balanced: hydrogen has a
meagre one, whilst others can have dozens. However, some atoms can
sustain a small imbalance in their construction, and either host
additional electrons or relinquish some of their normal quota. As you
have probably guessed from their name, it is these electrons that lead to
all electrical phenomena from lightning to digital watches.

If we consider the behaviour of electrons in a battery, an environment
which is easy to visualise, we can begin to understand how electricity can
be made to be useful. Batteries are constructed in such a way as to be a
source of electricity. They contain two areas, one with a surplus of
electrons, the other with a deficiency. Some batteries, such as those
found in cars, can be recharged when the imbalance between the two
areas has equalled out; others, such as torch cells, contain chemicals
which cannot easily be rejuvenated.

The two areas are connected to terminals in the outside of the case.

Chapter 1 Electronics of the Digital Kind

The terminal which leads to the area containing the surplus of electrons
is called the 'negative' terminal, and it is marked with a minus sign. At
first glance this may seem illogical but. as it is how the early
experimenters labelled their batteries, the tradition is too well
established to be tampered with now. This negative terminal is the
jumping-off point for the electrons which are eager to get across to the
other terminal, marked with a plus sign and called `positive'.

You are probably aware that one of the units used in the
measurement of electricity is the `volt': this can be thought of as the •
pressure on the electrons to move away from their present,
overcrowded, host atoms to find a more welcoming home. Electrons
and the nucleus of atoms behave in a similar way to magnets: the north
pole of a magnet is attracted to the south pole of another magnet, and
vice versa, whilst two north poles have the reverse effect, actually
repelling each other. Electrons don't like other electrons to be present:
if an atom is hosting too many electrons they tend to put pressure on
each other to go away and, if the opportunity occurs, the surplus tend to
leave. Do not think of voltage as the number of spare electrons. The
latter is an indication of the capacity of the battery, and therefore relates
to the length of time the battery would keep working. Voltage is the
force with which an electron is trying to escape.

Negative
	

Positive
Terminal
	

Terminal

Switch
	

Light Bulb

Figure 1.1

• •

Battery
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Figure 1.2

Analogue circuits
It is time to look at our first circuit. If you study Figure 1.1 you should
recognise some of the components. Figure 1.2 is the same thing drawn
as a circuit diagram, using symbols which make the drawing easier and
the overall picture simpler to understand, once you know what the
symbols are meant to represent.

As you can see, the battery is connected to the other parts of the
circuit by wire. Electrons cannot normally travel through air, except
when the voltage is very high, as in the case of lightning. Some materials
do allow the relatively easy movement of free electrons and are said to
be 'conductive': if a substance only allows the flow grudgingly, causing
the electrons to work hard for their passage, then it is called `resistive'.
In fact, all conductors have some resistance, but in the case of the
connecting wire made of metal (probably copper) the resistance is so
small as to be irrelevant.

The light bulb contains a particular type of wire, known as the
`filament', which has sufficient resistance to ensure that the electrons,
jostling past the atoms of the filament, cause it to heat up until it glows
and gives off light. In order to prevent the wire burning up, it is encased
in a glass bubble which is filled with inert gases so that the filament has
nothing with which to react. It is the amount of flow through the bulb
which determines how much work is done and therefore how much light
the filament gives off. This flow is called 'current' and we measure it in
'amps'.

The final component is the switch, the operation of which is
accurately expressed by its symbol — it provides a mechanical gap in the

conductor which can be made good when the switch is closed. When the
switch is open, the entire voltage difference of the circuit is present
between its two contacts.

I
\ //

	 •	 U	
Flow of Electrons

Figure 1.3

Figure 1.3 shows what happens when the switch is closed. The voltage
present causes electrons to travel along the wire, through the now closed
switch, until they reach the bottleneck caused by the resistive nature of
the bulb's filament. After passing through the filament. the electrons are
on the home straight and finally they arrive at their goal, the positive
terminal of the battery, where they find an atom which is not
overcrowded around which they can orbit.

By now you should have a picture of how the electric circuit in a torch
behaves. Perhaps you may like to compare it with a simple water
analogy, which at this level of complexity holds true.

The negative terminal of the battery can be though of as a tank of
water stored in a loft. Voltage relates to the height of the tank and
therefore the pressure that is trying to force water through the pipes.
The amount of water in the tank is the capacity of the battery. If there is
a stopcock it will act like a switch, cutting off the flow. Any narrow
pieces of pipe would restrict the flow in the same manner as a bulb limits
current.

You will be able to see that the three parameters of our simple circuit,
voltage. current and resistance, are related to each other. Connect a
bulb with a higher resistance into the circuit, and the flow of current will

6
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Inside Your Spectrum • • Chapter l Electronics of the Digital Kind

be smaller; use a battery with a higher voltage and more flow will
ensue.

Their relationship is fixed in mathematical terms as 'Ohm's law'. This
states that the current in amps flowing through a circuit is equal to the
voltage, in volts, divided by the resistance of the circuit, measured in
`ohms'. This means that we can calculate any one of these values if we
know the other two. Nowhere in this book will you be expected to
perform such mathematics, but I trust that when I use the words
voltage, current and resistance, I can safely visualise comprehending
faces rather than blank stares.

Digital circuits
Now we can neatly side-step much electrical theory and move on to
more practical matters. In glancing through any modern electronics
catalogue, you are likely to find a large section devoted to 'digital
integrated circuits': these go under names such as TTL and CMOS,
which do little to promote understanding. CMOS stands for com-
plementary metal oxide semiconductor, and this indicates how they are
made rather than what they do. Transistor transistor logic is a little more
helpful in explaining TTL. These components are the building blocks of
logic circuits: some of them are already prefabricated into fairly
complex circuits themselves. Even the largest computer components use
the same building blocks within a single package — there are simply
more of them.

In order to follow the processes involved in a digital circuit, it is
necessary to know something about 'semiconductors'. These are
substances which do not occur in nature. They are manufactured from
highly-refined materials such as germanium and silicon to have
particular, very useful, properties. The simplest device we can build
from semiconducting materials is a `diode'. which has two terminals and
passes current in only one direction. Even more useful is the 'transistor',
the resistance of which varies when a voltage is applied at a third
terminal. If we revert to the water analogy, the transistor is like a tap,
and the voltage present at the third terminal can be thought of as a hand
on the tap, controlling the flow.

In analogue circuits the precision of these devices is critical, as the
amount of flow allowed through the transistor is proportional to the
control voltage. In digital circuits. however, the next stage in the circuit
is only concerned with whether or not there is voltage present, so the
transistors can be less precise in their manufacture — they are only
acting as electrically-controlled switches.

I have often talked about things being on or off, and I should also
mention some other terms. If a positive voltage is present then that part

of the circuit is said to be 'high', or at 'logic level one': conversely, the
negative side of the circuit or supply is said to be 'low', or at logic level
zero'. There is another possibility, which occurs when we are examining
an area not connected to either terminal of the voltage supply, and this

is said to be 'floating'.
It will be useful to describe in detail the function of one logic chip, the

'7409 quad two-input AND gate'. Sometimes the names of these parts
can indicate what they do and in this case one clue lies in the word

'gate'.
A 'logic gate' is a point where a decision is made. Do not assume that

any thought is involved — given the same set of circumstances the same
gate will always behave in the same way. The 7409 contains four such
gates (hence the 'quad' in its name) and each gate has two input
terminals and one output terminal.

It is called an AND gate because it behaves in the following manner.

If its first input is high and and its second input is also high. then the

output will be high. If either, or both inputs are low, then the output will

be low.
You may be wondering why there are four gates in one package.

Simply, the cost is so low that the manufacturers might as well make the
most of the space. The chip has 14 pins connecting it to the outside —
four sets of three as access to the gates, and two for the voltage supply.
The 74 series runs on a 5 volt positive supply, the negative terminal
being called `ground', or GRN for short.

Input One

Low	 High

Input	
Low

Two
High

Low	 Low

Low	 High

AND Gate

Table 1.1

A useful technique in the study of logic is the drawing up of a truth
table. This is a method of assessing how a logic circuit operates and it is

8
	

9



•

Low
Input
Two

High
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worthwhile making use of a simple one in order to define the operation

of an AND gate.
Take a look at Table 1.1. Across the top of the table are the possible

states of input one of an AND gate, and down the side those of the
second input. Follow the `input two low' across to where it meets the
`input one low' column and you read low' — the state of the output
when both inputs are low.

Input One

Low	 High

High	 High

High	 Low

Input One

Low	 High

Low
	

High	 Low

High
	

Low	 LowTable 1.2

Input
Two   

Input One
psi mss.

Low	 High 

Input , Low
Two 

	 High 

Low	 High

High	 High      

Table 1.3

Now study Table 1.2. This describes the behaviour of an OR gate;
where the output is high if either input one or input two is high. With
Tables 1.3 and 1.4 we come across two new words: `NAND' and `NOR'.
However, these are only AND and OR with an N prefix, which stands
for `not'. If you made a truth table for an AND gate but you lied each
time you wrote an answer, the final result would describe the operation
of a NAND gate. One way of achieving this electronically would be by
using a circuit called an `inverter' attached to the output of an AND
gate. This is one of the simplest logic devices available as it has only one
input and output — as its name implies, the output is an inverted
reflection of its input, it swops high for low and vice versa. We can also
pass the output of an OR gate through an inverter to create a NOR gate.

Now take a good look at Figure 1.4. Spend a little time working out
what will happen when it is turned on, and when the switches are
pressed. The circuit represents a latch, or simple 'flip-flop'. and it shows
how a pulse, in the form of someone pressing the switch for a moment
(ie a logic high being applied briefly to one input of gate one) achieves a

permanent result. The circuit consists of two NOR gates, two switches,
and two components that greatly impede the flow of current, namely
resistors.

Study how the switch and resistor are arranged. If the switch is open,
there will be zero volts at the point where the wire leading to one input
of the gate is connected to the switch and resistor. Close the switch, and

Table 1.4
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+v
NOR

SET /0

	

	 Gates

R1

Z
0V

+V

RESET 

/ 	

R2

T 
- 0V

Figure 1.4

current will flow through the switch and resistor so that the point
connected to the gate will he at a high voltage.

Let's follow the operation of the gates. When first connected and
before either switch is closed, both inputs to gate one will be at zero
volts. Check this occurrence against the NOR gate truth table and you
can see that the results will be a high voltage at the output terminal. The
inputs to gate two will be low in the case of the terminal connected to
the switch and high for the one attached to output one, resulting in a low
output at output two. This ties up with the second input to gate one,
keeps it at a low voltage and so maintains the status quo, ie output one
high, output two low.

Now, imagine what happens when you close the switch marked `set'.
The first NOR gate now has a high and a low on its inputs, resulting in a
low output. This also affects gate two, as it now has two low inputs, so
its output goes high. This has an effect on gate one, by making both
inputs high; but, as you can see from the truth table, its output remains
low. We have a new, but stable situation with the two output values
swopped over.

Let's see what happens when we reopen the set switch. Gate one has
one low and one high input, so the output remains low. The second gate

is not affected and the outputs remain the same. In order to make the
outputs flip back, we need to press the reset switch. Try tracing the logic
levels that will result. This circuit would be said to remember which
switch was pressed last — if it was 'set' then output one will be high.
Extra circuits can be added to make this device work as a store: it can
actually remember a logic level, a property which, as you will see later,
is very useful indeed.

Outputs

12 13



CHAPTER 2
Numbers and Data

In the days of telegraph, communication along the wires was in digital
form, with morse code using dots and dashes rather than ones and zeros.
The process was slow and cumbersome as the information which was to
be sent had to be coded, passed on as a series of dots and dashes, and
decoded at the other end of the wire. If only something more complex
than the on/off signal could be sent, it would all be a lot quicker: for
example, by transmitting 26 uniquely differing signals along the wire,
the whole alphabet would be able to be represented.

Analogue and digital techniques would tackle this problem in
different ways. An analogue solution might be to vary the length of the
dashes, or to place a voltage of changing levels on the line — continue
along this path and you will end up with the telephone.

The digital solution, however, is to add more lines. If one line can be
at one or zero, then two lines can indicate any one of four conditions —
both lines off, line one on and line two off, line one off and line two on,
or both lines on. Three lines can offer eight permutations — the four
available from two lines with the third line on or off in each situation.

Imagine a system of communication which consists of five wires
connecting two devices able to code and decode information. You
would be able to have 32 buttons, labelled with letters of the alphabet,
for your message. A fairly simple digital circuit could then codify this
into a unique five-line signal of ons and offs to transmit to the receiver.
This would decode the message and it could respond by lighting a
particular bulb. This kind of device could, in computer jargon, be called
a `five-bit parallel data transfer system': that is, it passes information
(data) of five `bits' (or ones and zeros) along five wires running in
parallel.

Binary and hexadecimal numbers
Let us now consider the same view in a more theoretical way. How
people think of numbers depends on their education. I was not
introduced to the concept of numbers to a different base until I was too
set in my ways to grasp it quickly, but modern maths now teaches early

15
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on the idea of numbers to bases other than ten. For those puzzled even
by the word 'base', an explanation is required.

We have ten numbers that only need one figure to represent them,
zero to nine. Each time we reach ten we add to the next column, and so
ten is said to be the base. But why only ten figures? If the human race
had evolved with 16 fingers and thumbs, we might have had six more
single figures to represent the numbers 10 to 15, and then we should
have worked to the base 16.

Table 2.1: Decimal to Hexadecimal Conversion

DEC HEX DEC HEX
0 00 16 10
1 01 32 20
2 02 64 40
3 03 128 80
4 04 256 0100
5 05 512 0200
6 06 1024 0400
7 07 2048 0800
8 08 4096 1000
9 09 8192 2000

10 OA 16384 4000
11 OB 32768 8000
12 OC 65535 FFFF
13 OD
14 OE
15 OF

Try writing out numbers, say from 1 to 30, using the base 16, with the
letters A to F to represent 10 to 15, and compare your results with Table
2.1. You are using hexadecimal numbers, a numbering system often
favoured by machine code programmers because it is easier to translate
into `binary', which is the way in which the computer itself handles
numbers. As its method of representing data only permits its columns to
contain two different figures, 0 and 1, the computer needs to use more
columns in order to represent a number greater than 1. Instead of units,
tens, hundreds, thousands and so on, the columns go up in value by the
power of two, ie 2, 4, 8, 16, etc. The Spectrum, together with the
majority of home computers, uses a data structure of eight such
columns, and can therefore handle numbers up to 255: this is the
decimal number which, when it is a binary number (or a number to the
base of two) is represented as 11111111.

Chapter 2 Numbers and Data

I've already said that each voltage (one or zero) is called a bit, which
is short for binary digit. The columns or lines which convey the eight
separate bits around the computer are known collectively as the `data
bus'. Eight bits of information grouped together to represent a single
piece of data are called a `byte'; and eight-bit micros handle one b yte of
data at a time. They can store, and communicate with other devices,
using numbers in the range 0-255.

The value of using hexadecimal (hex for short) is that one byte can be
expressed as a two-column number in the range 00 to FF. With a little
practice, you should be able to convert mentally a binary number into a
hex number and vice versa, so that you can visualise how the individual
lines of the data bus are behaving without the inconvenience of reading
and writing eight-column numbers. If you do find hex absolutely
impossible, you can get away without using it, but you will still need to
become familiar with binary.

I have included a program which can be used either to demonstrate
the relationship between binary and decimal. or to calculate the binary
form of a decimal number. This program, and all the others in this book,
is marked extensively with 'remark statements' (REM), which you can
omit if you want to save time.

Although this first program contains no machine code, later ones will
do so and you may lose them completely if you run them with a typing
error included. In order to prevent this, I strongly recommend that you
save and verify anything that takes more than a minute to enter. As all
the programs start from line 10, you can do this using the instruction
`Save "name" line 10': then they will run automatically when reloaded
(see Manual, Chapter 20).

Program 2.1: Binary demonstration

	

10 REM	 Binary demonstration

	

11 REM	 program
1 00 REM

	

10 1
 

REM	 Set up
1 0._ REM
110 GU SUB 400: LET number =0e GO SUB 7,0

115 REM

	

116 REM	 Menu
117 REM
:120 PRINT AT 20, .1:; "Press "; INVERSE 1.;

"C 	 INVERSE. 0;"alculate or "; INVERSE 1
; "0" ; INVERSE 0; "emonstrate"
1:0 LET a$= INKEY$ ; IF a$="" THEN GO

TO 1':0

16
	

17



Inside Your Spectrtun

	 •	 •	 Chapter 2 Numbers and Data

140 IF a$= " o^ THEN GO SUB 500: GO TO 1
20
150 IF a$ = "c^ THEN GO SUB 600: GO TO 1

20
160 GO TO 130
300 REM
301 REM	 Display Binary Number
302 REM
310 LET power = 123: LET remain=number
320 FOR x = 0 TO 7
330 LET result = 1: LET remain=remain–pow

er
340 IF remain<0 THEN LET remain=remain
+power: LET result=0
350 LET z= x *4+1: LET color=4-2*result:
FOR v=3 TO 9: PRINT AT y , z ; PAPER color

;"	 ": NEXT y
360 PRINT AT 12,7;result
370 LET power =power/2: NEXT x
380 LET a$="00"+ STR$ number: LET a$=a$

( LEN a$-2 TO LEN a$): PRINT AT 17,22;
a$
390 BEEP .5,number/4: RETURN
400 REM
401 REM	 Display Screen
402 REM
410 BORDER 4: PAPER 6: INK z: CLS
420 LET power = 256: FOR x=0 TO 7: LET po

wer =power/2: LET z=x*4+1: PRINT AT 1,z;
^d";7–x; AT 2,7; INK 3;powerv PLOT 32*x+
7,96: DRAW 0,55: PLOT 32*x+24,96: DRAW 0
,55: NEXT x
430 PRINT AT 0,0; " ( ^ ; AT 0,31;") " : PLO

T 6,174: DRAW 244,0: PRINT AT 0,12; INK
7; PAPER 1;"DATA BUS"
440 PRINT AT 13,0; " ( " ; AT 13,31;")": P
LOT 6,64: DRAW 244,0: PRINT AT 14,10;
NK 7; PAPER 1; ^ BINARY NUMBER"
450 PRINT AT 17,5;^Decimal Number--^
460 RETURN
500 REM
501 REM	 Demonstration
502 REM
510 PRINT AT 20,1;^Press ^; INVERSE 1;
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"M^; INVERSE V;"enu or hold down "; INVE
RSE 1;^F^; INVERSE 0; reeze.
520 FOR a= 1 TO 255: LET number =a: GO SU

B 300
530 IF INKEY$ =^m" THEN RETURN
540 IF INKEY$ <> "^ THEN GO TO 540
550 NEXT a: RETURN
600 REM
601 REM	 Calculate
602 REM
610 PRINT AT 20,1:"Enter a value from

zero to 255"
620 INPUT "Decimal Number 	 ";number
630 LET number = INT number: IF number>2

55 OR number<0 THEN GO TO 620
640 GO SUB 300: RETURN

When Program 2.1 is entered and safely saved, enter 'RUN'. You wil
be offered a choice of either a demonstration or a calculation.

The calculation mode asks for a number in the range 0-2 55, and then
displays it in two forms. At the top of the ,o,eou, there are eight lines
representing the data bus of your computer. If these are red, the voltage
is high; if green (or the same shade as the border if you are using a
monochrome TV), it is low. Across the screen below the lines is a string
of zeros and oons, showing your chosen number in its binary form.

For the demonstration modc, the computer will cycle through the
numbers, and you can freeze the display by holding down any key other
than the menu key, 'M'

Handling data
So now we have seen how an eight-bit micro deals with data. You may
quite rightly argue that your Spectrum can handle words, and both very
large and very small numbers. 8ovevcr, these are handled by the built-in
software program — numbers, for example, are stored and manipulated as
five separate bytes of data. Even the machine language which drives the
computer sometimes uses a serial form of coding: certain machine
instructions come as two or more bytes, with the first giving instructions to
the computer to expect further data and how to treat it. These operations
will be discussed later. Parallel data transfer can sometimes extend outside
the computer itself: for example. some printers are connected in this
manner. When long distances are involved. or speed of communication is
less üopoouut, it is usual to revert to a serial method. The coding of data
into a suitable form may be handled by the computer's host program.

19
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We have looked at the handling of data in digital form. A similar
method is used to direct the flow of that data within the computer.
There is another 'bus' inside your Spectrum, called an 'address bus', and
this holds a binary number to indicate which particular area the
computer wishes to deal with. Each number is unique and can therefore
be decoded by using logic circuits to activate the relevant address.
(Remember the lighting of the bulb in the five-bit parallel data transfer
system I mentioned earlier.) In the next chapter you will see how the
computer manipulates data by using both the address and data buses.

CHAPTER 3
The Microprocessor

In the not too distant past, computers filled whole rooms. The
component parts were housed in separate packages, according to their
function. If you had been shown round such an installation, your
attention may have been directed towards 'memory' in the big, grey
boxes over there, or to 'punched-tape reader' here. Your guide may
well have indicated one of the anonymous grey cabinets and said: 'that's
where the actual work takes place: it's the Central Processing Unit'.

Computers have now shrunk in size, but if you look inside you can
still point to one integrated circuit and say: 'that's where the work is
done'. These 'CPUs' or 'microprocessors', contain all the components
that used to be found in that large grey cabinet, etched on to a slice of
silicon of tiny proportions.

Your Sinclair Spectrum contains a Z80 eight-bit microprocessor, a
design developed by Zilog in the late 1970s. It is one of the most
successful, particularly in the field of small business microcomputers, so
I will be using it as a basis for my descriptions. Other microprocessors
may be more or less sophisticated. but the general principles are the
same. The enclosing of all the processing functions into one circuit
encourages us to look at the microprocessor as a kind of 'black box', and
just concern ourselves with its inputs and outputs. It is at this point that I
intend to start.

The Z80 — the exterior
A Z80 microprocessor has 40 terminals. Whilst some of these are for
inputting, and others for outputting, voltages, some of them can
perform both functions.

To deal with the simplest first, let us study the two terminals (or pins)
of the integrated circuit which provide it with its power. For its internal
operations and also for outputting to other devices, it needs a supply of
five volts positive applied to the pin called the Vcc terminal (supply
voltage), relative to the GRN (ground) terminal. When this supply is
present, a small current passes through the device, the amount of which
varies according to the function being performed by the Z80.

Next there are the eight data pins, DO to D7, through which the CPU
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can pass bytes of data to and from the outside world. These are
bi-directional. On some occasions, the eight pins are pulled high or low
by the CPU in order to impose a byte of data on the data bus to be used
elsewhere. At other times, the Z80 reads in data placed on the bus by
other devices through its data terminals and, when this is happening,
these terminals are floating.

This type of terminal is very useful and therefore very commonly
found on computer chips — it alows you to connect many things to the
same data bus flowing along the lines. Chips that are built with such
terminals are known as `tri-state' devices.

Controlling data
Now that we have a method of passing data in and out, we need to
control its destination. For this purpose, microprocessors are equipped
with address lines allowing them to signal which one of their
surrounding devices they wish to communicate with. The Z80 has 16
such address lines. One of the more sophisticated features of this CPU is
that it is designed to address two separate forms of peripheral device in a
different manner. These are 'memory devices', which store data, and
`ports', which interface with the outside world.

Two terminals called IORQ (input/output request) and MREQ
(memory request) indicate with which class of device the CPU wishes to
deal. If MREQ is at 0 volts, then the CPU addresses memory: the
address lines hold a 16-bit binary number, revealing which memory slot
the CPU intends to communicate with. Eight bits of data give us 256
possible combinations: this is 2 multiplied by itself 8 times, which is 2
raised to the power of 8, and it can be written as 28 . 2 raised to the
power of 16 comes out as 65,536, and this is normally the maximum of
memory slots (or locations) that the Z80 can address, as 16 is the
number of address lines. I say normally because, with additional
circuitry and some clever tricks, some microcomputers (although not
the Spectrum) are capable of switching between memory devices. This
allows for more storage space.

It is worth a short digression in order to explain a piece of computer
jargon which can be confusing. Advertisements and computer literature
frequently describe a computer as having a certain amount of memory,
for instance, 16K bytes. As K is the SI unit for a thousand (ie the
internationally accepted standard) it would be natural to assume that
16K means 16,000 bytes. However, 1K of memory is used to represent
1024 bytes, this being the amount of memory that can be addressed
using 10 bits (ie 2 10). This small discrepancy makes 64K, which is the
normal maximum capacity of a Z80 based microcomputer, actually
mean 65,536 bytes.
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Two further pins called RD and WR (standing for 'read' and 'write')
tell the memory circuits whether the Z80 requires data from memory, or
whether it is placing a byte on the data bus which it requires to be stored
at the location specified by the address bus. These pins are also used
when the CPU is addressing a port. We have already seen that the CPU
can address memory when the MREQ is at 0 volts. When IORQ is low,
the read and write pins serve the same function they did for memory,
applied now to a port, the address of which is held on the eight low
address lines. This means that the maximum number of ports that the
Z80 can handle is the by now familar number, 256; and, as with
memory, IORQ and the address bus can be decoded to activate the
desired circuits. However, it is possible to acquire extra space in the port
addressing, and this will be dealt with under the section devoted to the
keyboard.

The essence of a computer system is beginning to emerge but, in
order for the CPU to spring into life, there are two remaining pins to
consider. The first is named CLK, which stands for 'clock': this is the
heartbeat of the processor. In order to make the Z80 function this pin
must be pulled alternately low then high by an external voltage source.
This is done by a circuit called an `oscillator', which generates a varying
voltage in a form known as a square wave. The output of the circuit is
high for a fixed period of time and then falls low for the same duration,
performing this task continually.

If you are interesting in seeing why the output is named as it is. enter
and run Program 3.1. This plots a graph of voltage against time, but the
speed of this simulation is very slow compared to the oscillator in your
machine. The sequence of the voltage going high. remaining there,
going low, and then starting to go high again, is called a 'cycle', and we
measure the speed of alternating voltages as the number of cycles they
perform in one second. The scientist who has this very fundamental unit
of measurement named after him is `Hertz'. Hi-fi buffs will know that
the frequency of the sounds that we humans can hear occurs in the range
of about 30 hertz to more than 16 kilohertz, or sixteen thousand cycles
per second. The operating speed of the oscillator in your Spectrum is
much higher — 3.5 megahertz (mega stands for million).

Program 3.1: Square wave
14? REM Square wave graph
11 R EM plotting program
12 REM

100 REM Set up
:101. REM
110 PAPER 0:	 INK 6:	 BORDER 0:	 CLS
:10 PRINT "VOLTS =	 ' :	 FOR x=1	 TO 6: F'RI
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Plot val ues

7 ; S+ (24 *>: /40 ) , :'2 +vol. ts*24

Print values

0,7.,volts; a^

2:1, 1°;; ;./40;<a$

End loop

Inside Your Spectrum
• • Chapter 3 The Microprocessor

NT AT *3 , o; 6—;; : NEXT ..
130 INK 3: PLOT 7,151: DRAW 0, —120:

W 247,0: INK 6
140 PRINT AT 1,1:7;"Square Wave"
:150 DIM a$(9)
200 REM
201 REM	 Plotting Loop

202 REM
210 FOR ::>: = 0 TO 400
211 REM
220 REM	 Calculate volts
221 REM

LET volts=2.5+10* SIN (x/40)
IF voits>5 THEN LET volts=5
IF volts <0 THEN LET volts=O
REM
REM
REM
PLOT. INK
REM
REM
REM
PRINT AT
PRINT AT
REM
REM
REM
NEXT
STOP

Each time the microprocessor senses that the clock input is being pulled
from low to high, it performs the next task, so the clock acts as a
time-keeper for the CPU, regulating its actions and prompting it into
doing the next function. With all the complex circuitry that a
microprocessor contains, why can it not regulate its own speed, or, even
simpler, run as fast as it can? The answer is that the external clock signal
gives circuit designers control over the CPU, and allows them to build a
computer in which all the associated circuitry can keep pace with the
main microprocessor. It also gives them the facility to stop the clock, as
it were, to freeze all action until the oscillator is turned on again.

The remaining pin that I must mention is the `reset' pin. If you attach
it to zero volts it behaves exactly as its name implies it should — it stops
the CPU from continuing whatever it is involved with and makes it
recommence from a predetermined point.

Let's go through what happens when your Spectrum, or any other
Z80-based microcomputer system for that matter, is turned on. All the
circuits begin to receive the voltage they require in order to function.
The oscillator circuit starts to apply the square wave clock signal to the
CPU. However, a very simple electronic circuit ensures that, for the first
few moments after the switch-on, the reset pin has zero volts applied to
it. This causes the processor to start working from the correct place.

It is possible to witness what would happen if this was not done, by
turning your machine off and on very quickly. If insufficient time is
allowed for the reset signal to be generated, the computer may 'hang up'
— it will display a peculiar picture on the screen and fail to respond to
the keyboard. When the reset signal is generated correctly, however, it
holds the reset pin at zero volts long enough for the CPU to sort itself
out. The reset circuitry then allows the appropriate pin to rise to five
volts, and the Z80 can start work.

After a reset, the Z80 always does the same thing — it puts the
number zero on the address bus, so that all 16 address lines will be set to
zero volts by the address pins, MREQ and RD. Now the Z80 has
generated sufficient information to tell its associated circuitry that it
requires the data stored in memory location zero to be placed on the
data bus, and the memory circuits begin to perform this task. The
processor waits for the next clock pulse (the low-to-high transition of the
oscillator circuit). Then it assumes that the data on the data bus is that
provided by the memory, and so reads it through its data pins. What the
CPU has just fetched from memory location zero is its first machine
code instruction and, still using the clock pulses as a timing reference,
the processor goes about the business of performing whatever the
instruction tells it to do.

The processes by which the Z80 can store data in memory and
exchange information with circuits which are activated by the IORQ
pin, should be assumed to be variations of the above description of how
it can fetch data from its memory. The time has come to look at what is
contained within the CPU itself. This is not as daunting as it may seem
and, if you are interested in the nature of machine code, the internal
structure of the Z80 is essential knowledge.

DR A

._:;0
2 40
2;0

300 t )

30 :1

-02
_ 1 0
3-)0
321 :1

330
340
350
351 :1
3";2
360 t.
:370

2524



• •
CHAPTER 4
Inside the Box

The inside of the Z80 microprocessor can be divided up into a number
of different areas. The workings of some of these need not concern the
person who wishes to write machine code programs, but an overall view
of what goes on can be of great benefit if you want to discover what
actually happens when the program is running.

The registers
The processor contains a number of registers. A register consists of
eight flip-flop type circuits, each capable of storing one bit of
information, connected in such a way so that together they can hold one
byte of data — they are in effect the CPU's personal memory cells. The
registers are all connected to an internal data bus. (NB. This is not the
same data bus as the one with which the Z80 communicates with the
outside world of memory and ports.) Whatever appears on these lines is
not always transmitted to the data pins, although they are used to carry
data to and from the pins when required.

Also connected to the internal data bus is circuitr y called the
`arithmetic and logic unit', or ALU. It is in this that all the processing of
bytes of data is carried out. Here the CPU can add or subtract two
binary numbers, and perform logical procedures such as ANDing two
bytes together. The whole operation is governed by complex circuitry
called the `control unit' — this deciphers the machine code instructions
fetched from memory, and reacts accordingly.

Figure 4.1 merits considerable study — it represents the internal
structure of the Z80 processor. The control unit can manipulate all the
registers, as well as send the required signals to the external circuits and
the bus control circuits. The `instruction' register can only be used by
the control unit; its function is to store the last instruction that was
fetched from the external memory. All the other registers can be used
by the programmer, but some are more versatile than others.

The PC register, the `program counter', is used to store the address of
the next instruction to be interpreted. When the CPU is reset, this
register is loaded with the value zero, which is the location of the first
instruction. When this has been fetched, the control unit automatically
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adds one to the value in the PC, thus storing the address from which it
will receive subsequent data. Unless the programmer uses certain
`jump' instructions to reload the PC with a different value, machine
code data is always read sequentially. The PC is a 16-bit register. so it
can supply any one of 64K addresses to the address bus.

The main block of user registers comes in two groups, both of which
use identical initials as names, but with one set distinguished by a ' suffix
to indicate that it is the alternative group. Only one of these sets is active
at any one time — special machine code instructions allow the user to
determine which group is connected to the internal data bus in order to
receive further instructions. To all intents and purposes, the alternative
set can be thought of as useful storage space, particularly if you
interrupt work on one task to carry out another (in which case the values
held in the registers can be saved by switching over to the other set for
use until you are ready to return to the first task).

The 'accumulator', or A register, is the most versatile of these user
registers, because it can have all the arithmetic and logical functions
applied to it. The value held in any other user register or stored in
external memory can be added, subtracted. ANDed. ORed, or XORed
with the A register, which will then contain the result.

Certain results of the ALU's calculations can be of particular interest,
eg when the final product is zero. For its own purposes, as well as for
those of the programmer, it notes electronically some of these
occurrences and stores them as single bits of data in the F register,
sometimes called by its full name, 'flags'. This conjures up a quaint
analogy — imagine a small flag hoisted up a pole marked 'Z' every time
a calculation results in zero. Amongst other things, the F register also
records if the operation has resulted in a 'carry', ie if the answer has
exceeded an eight-bit value.

The remaining six eight-bit general purpose registers, B, C, D, E, H
and L, can be used as the temporary storage space of values which the

	

'-' ö	 x	 CPU can therefore get at quickly. But they can also function as 16-bit
4.1 registers by pairing up into BC, DE and HL — a facility which is very

useful when you are manipulating address values. As pairs, they can
have some limited arithmetic operations performed on them, with the
result going to the HL register. Another role for the register pairs is as a
memory pointer: this means that you can, for example, load the A
register with the value held at a memory location, the address of which

	

U	 is held in the HL register.
There exist two special 16-bit registers of which the purpose is to hold

important memory addresses — important, that is, to the programmer.
He is able to load the IX or IY registers with a convenient address, and
then have easy and quick access to memory addresses in the range 128
locations below, up to 127 above, those held in either of these `index'Figure 4.1
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registers. Two of the less frequently used registers are named I and R.
The I, or 'interrupt vector', register can be used to change the behaviour
of the CPU when it receives an interrupt, a subject I will deal with later.
The R, or `refresh', register is often used if the Z80 is worked in
conjunction with `dynamic memories'. Again, I will expand on this
later.

The final register for us to consider is the SP, or `stack pointer',
register. This is another form of memory pointer and allows the use of
some sophisticated programming techniques. Those of you familiar with
BASIC programming will know of the `subroutine', whereby the
program can be made to jump to a particular line: it remembers where it
came from and returns there when it encounters a RETURN
instruction. The same principle can be used in Z80 machine code, with
the return address stored at the memory location indicated by the stack
pointer. This register has other uses which will feature in the machine
code chapter.

You should now understand how the CPU exchanges data with the
outside world, and have an idea of its internal structure. Let's go slowly
through the procedure for executing a very simple program, which we
wil assume is stored in external memory starting at address zero. Refer
to Table 4.1 to see the example values.

Table 4.1

Address Contents
0 62
1 8

33
3 0
4 88
5 61
6 202
7 15
8 0

9 54
10 0
11 35
12 205
13 5
14 0
15 116

Chapter 4 Inside the Box

Executing a program
When the reset pin ceases to be held low by the reset circuit, the Z80,
during the first two clock cycles, fetches a byte of data from the memory
address held in its program counter. This it passes along its internal data
bus to the instruction register where it is stored for use by the control
unit. This data is the first machine code instruction of the program (or
'op' code, short for operation code) — the control unit decodes it and
reacts accordingly.

In our example program, the first op code is 62 decimal, which tells
the control unit to fetch the next piece of data stored in memory, and
place it in the A register. Two more machine cycles occur whilst this
instruction is 'understood'. Meanwhile, the control unit increases the
value in the program counter by one, so that now it holds the value one.
Incidentally, the control unit can perform concurrently other tasks
related to servicing any dynamic memory circuits which may be
attached, but this need not concern us.

Back in our example program the CPU, aware that what is stored at
address one is not a further instruction but data, performs another
fetching operation from memory and stores it in the A register, as
instructed by the previous op code. It also increments the program
counter again. Whatever data was stored at address one, in this case 8
decimal, is also stored in the A register. The CPU has completed the
task set by the first instruction, so it fetches the next from memory,
using the address, currently 2, stored in the PC. The next op code in the
program is dutifully transferred to the instruction register and acted
upon. It is 33 decimal, which tells the CPU to put the next two bytes of
data into the L and H registers respectively. Now the L register contains
whatever was stored at location 3 (0); and H stores the data from
location 4 (88 decimal). Remember that one is added to the PC each
time a byte is fetched.

We have now reached the instruction in location 5, which is collected
in the same manner. This is 61 decimal, which represents the simple task
of subtracting one from the contents of the A register: when this is
performed, A holds the value 7 decimal. On to address 6, which
contains 202 decimal. This is a conditional op code and could be written
as, `fetch the next two bytes of data from this program and IF the result
of the last arithmetic or logic operation was zero, load the data fetched
into the program counter'. The CPU is making its first `decision', based
on the contents of the flags register. We made the CPU perform
arithmetic only one program step earlier, when it subtracted 1 from the
contents of the A register. However, the result was 7 rather than zero.
So, although the next two bytes are fetched from addresses 7 and 8,
nothing is done with them as the Z flag is not set. We will see shortly
what happens if it is.
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The PC now contains 9, so the CPU loads the contents of this address,
which is 54 decimal, into the instruction register. This in effect tells it to
`fetch the next byte from the program as data, and place it in the
memory address represented by the contents of the HL register pair'. So
the value zero is obtained from address 10, and the control unit goes
about the task of storing it in memory.

The first step is to place the contents of the L register on the eight low
address lines, and the contents of the H register on the eight high
address lines. This means that the address bus holds the value 22528
decimal, which is 256 times the value in H (88), plus the contents of L, in
this case zero. Then the control unit pulls the MREQ line low,
activating the external memory devices, and it places on the data bus the
value it has just fetched from the program memory area, which is zero.
It waits a clock cycle for everything to respond and then pulls the WR,
or write, line low. The external memory takes this as a signal that it
should store the data on the data bus, at the address on the address bus.
What is the result? The data which was held in memory location 22528,
has now been over-written by the data zero.

With the PC now set at 11, the CPU has reached the instruction 35
decimal, which it fetches and reacts to by adding one to the value of the
HL register. The data in address 12 is the 'unconditional' version of one
we have encountered before, at address 6. This time the CPU is told to
load the PC with the next two bytes. So, as locations 13 and 14 contain 5
and 0 respectively, these are fetched, and then the PC is loaded with the
value 5. (The low part of the PC is loaded with the first byte fetched, and
the high part with the second.)

Now where does the next instruction come from? The previous
address in the PC has been over-written, so the next instruction comes,
not from location 15, but from 5. The CPU has performed a jump
instruction: it loads the op code from address five, which is 61, an
instruction that it has performed before. The program has created a
loop — it will continue to perform the op codes at locations 5 through to
12, but it will not do this indefinitely, due to the conditional instruction
at address 6. Each time the loop is carried out, the value of the A
register is reduced by one. After the eighth time that the op code 61 is
performed, the A register will have fallen to zero, so that when the CPU
checks the zero bit of the flags register, it will find that the previous
operation has indeed resulted in zero.

This involves proceeding to the second part of the operation dictated
by the op code at address 6 — if you refer back you wil see that, in the
instance of the result being zero. the PC is loaded with 15. After
executing the loop eight times, the program jumps to the instruction at
15. This happens to be the final one, and it tells the CPU that the
program has been completed.

Chapter 4 Inside the Box

Use Table 4.1 to go through each step of the above program carefully
until you are clear as to what is happening inside the processor. At this
stage it is not important to understand in detail the program itself, but
rather to visualise what steps are taken by the internal structure of the
Z80 processor, in order to follow through the instructions it fetches from
the area of external memory containing the program.

Well, does the program work? And what does it actually do? To
answer these questions, why don't you try running it on your Spectrum?
First of all, however, it must be loaded into memory. We cannot load
data into the first 16K of memory as, on the Spectrum. this is filled with
the machine's own program, so we will have to use an area higher up in
the memory. Consequently, as the first instruction will not be at location
zero, we cannot use the reset pin to direct the program counter to it.
However, there is a way round this.

The Spectrum has the facility of running machine code from BASIC
via the function USR. This is included in Program 4.1 in the form
`RANDOMIZE USR 28672', and it works in the following manner. The
address the BASIC program has reached in its execution is stored at the
address indicated by the stack pointer, and the program counter is
loaded with the value 28672, so that the CPU starts running the program
stored at this address. When the CPU finally encounters the op code 201
decimal, it reloads the original value of the PC from the area of memory
pointed to by the SP. This ensures that the CPU returns to the BASIC
program it had been running. BASIC now uses the value that is
contained in the BC register of the CPU, and treats it as the result of the
function USR.

The practical consequence of this is that if we state RAND USR and
then a valid memory address in any BASIC program we write, the
Spectrum goes to that address and runs any machine code program
found there, until it reaches a RET machine code instruction (201
decimal). Then it seeds the random number generator with the value of
the BC register. This is just a convenient way of calling up a routine: if
we use PRINT USR instead, then the result from BC would be printed
on the screen.

Now enter and save Program 4.1 When you run the program. it first of
all POKEs the machine code held in the data statements into memory,
starting at location 28672. Then it prompts you to press a key, and when
you do so it jumps to the program and executes it. A thick black line
should appear in the top lefthand corner of the screen. Note the speed
with which this occurs: what has happened is that the machine code has
poked zero values in seven memory locations, 22528 to 22535. I chose
these particularly because they make up the first part of what is called
the `attributes file'. This controls what colours appear on the screen, and
where, and is explained in the section of the book devoted to screen
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display. You may wish to try changing the value of the A register (the
second number in the data statement), the value loaded into the
attribute file (eleventh in the data statement), or even the memory
pointer in HL itself (but you will need to delete line 60 before other
values will work). If you make HL lower than 16348 you will not see the
result. Any higher than 23296 and not only will nothing show, but you
may cause a `crash' by interfering with the running of the computer.
This will not cause any damage, but you may have to switch the machine
off and on again to regain control. Incidentally, this machine code
program is not only very simple, it is also quite crude. But it does prove
that we can bypass the Spectrum's operating system and exploit the
power of machine code programming.

Table 4.2: Machine Code for Program 4.1

Address	 Hex Code	 Assembler
7000	 3E08	 LD A,08h
7002	 210058	 LD HL,5800h
7005	 3D	 DEC A
7006	 CAOF70	 JP Z,700Fh
7009	 3600	 LD (HL),00h
700B	 23	 INC HL
700C	 C30570	 JP 7005h
700F	 C9	 RET

Program 4.1: Machine Code Demo
:1'? REM	 Machine code  demo

11 REM ('I
20 REM	 Set up
21 REM
30 PAPER 7: INK ir: BORDER 7: CLS
40 REM
41 REM M	 Check -e ^.-_ l:: data
'3'2 REM
50 RESTORE „ LET su.m==ir: FOR .,_0 T. O 1.5:

READ a: LET <..um=s-um+a: NEXT x
r:D s? IF sum	 11C_:::; THEN	 PRINT "The dat-

a statements are Wror-it7. '. "'F'lea.<ee check

that <:+'l: you have " " e f-it e1' e d them correctly":

STOP Ci P

70 REM

7:1 REM	 Poke code into memory

72 REM
80 F:E'_TOF:E : FOR x=28672 TO 28687: REA

D byte: F'(JKE . ,byte: NEXT
90 REI"I

91 REM	 Wait for key
REM

100 PRINT AT 16, 1i?; "PRESS A KEY"
110 % IF	 :[ NF::EY `h ="" THEN GO TO 110
120 REM
:121 REM	 Jump to routine
12: REM
130 RANDOMIZE LJSR 28672
:140 REM
141 REM	 Returned
142 REM
:150 PRINT AT 16,8; "Program complete"
16i i STOP
500 REM
501 REM	 Machine code
502 REM
510 DATA o2..,8,•3 .0.88,61,202, 15
520 DATA 112,54,0,_5,195,5,11'2,201
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CHAPTER 5
RAM and ROM

In previous chapters, I have glibly mentioned 'external memory'
without any further illumination. However, now that we have covered
the main working processes of the Z80, it is time for a description.
Memory is used by your Spectrum to store the data it needs in order to
function, whether that data is the machine code it uses when it is
switched on. the simple program from this book, or your latest copy of
Space Invaders.

Types of memory
There are essentially two distinct types of memory used in microcompu-
ters. `Read only memory' (ROM) does not allow the microprocessor to
alter its data — as its name implies, it can only be read from. The other
is called `random access memory' (RAM), which is a slightly confusing
title because its main feature is the facility for having its contents altered
under the control of the computer. Of course, the situation is not as
simple as this sounds: within both RAM and ROM there are different
types of memory devices. Let us start by looking at the type of ROM
that your Spectrum uses to store the built-in machine code program
which makes it function.

This ROM has 14 address bus pins, labelled AO to A13. When the
`chip select' (CS) pin of the memory is pulled low, the contents of an
eight-bit register inside the chip, corresponding to the address currently
present on the address pins, are placed on the data pins of the memory
device (and consequently on the data bus of the computer). As each
different address is capable of accessing a separate eight-bit storage
area, with 14-bit binary addresses the ROM is capable of storing 16484
(16K) different bytes of data. This is actually present in the form of
simple connections made at the time of manufacture.

Imagine that the address is decoded by logic circuits in such a manner
so as to force the output of one, and only one, logic gate high. If that
address were designed to store the number 255, or 11111111 binary,
then that gate's output would be connected to all the eight data pins of
the ROM. If the data stored was supposed to be 129, which is 10000001
in binary, then the high voltage on the output of the gate would only be
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connected to data pins 0 and 7. The data lines are normally low, but the
logic gates can pull them high so that the pins will reflect the data stored
at an address pointed to by the information on the address bus. When a
logic gate is not selected by its appropriate address, its ouput is floating,
and therefore it has no effect on the data bus. When the CS pin is not
activated by a logic 0 voltage level, then the whole output of the chip is
floating.

You could calculate that, if every address held the data 255, then over
130,000 connections would need to be made. This is achieved by the
manufacturers using a photographic process to etch the connections on
to the silicon material of the chip itself. The template used in this
process is very expensive, but once set up the cost of producing each
individual chip is low, so these Mask Etched Read Only Memories are
economical only for large production runs.

It is worth mentioning two other types of ROM that you may
encounter. The Programmable Read Only Memory (PROM) is a device
that comes of the production line completely blank. It is programmed by
a machine generating high voltages which `blow' the linking connectors
in much the same way a fuse might behave if too great a voltage were
applied to it. An improved version, the Erasable Programmable Read
Only Memory (EPROM), stores data as electric charges. Not only can it
be programmed, but also, if necessary, the data can be erased by the
application of ultra-violet light through a small window on its upper
surface.

Both of the above memory device types are used mainly for small
production runs and prototypes, and they are often `pin compatible'
with normal ROMs. This simply means that they will fit the same
sockets and have their pins in the same places. The early prototype
Spectrum computers were fitted with EPROMs, so that they could be
fully tested before the program contained in the EPROMs was
committed to an expensive tooling-up procedure to produce the ROM
which replaced them.

Why we have different types of memory
The most important aspect to notice about all ROMs is that they will
retain the data they contain at all times, whether they are powered up or
not, because, although they need a supply voltage to operate the
decoding circuits they contain, the data is stored in a 'non-volatile' form.
This is an essential facility for any computer that is to be turned on and
off, so that when it is first switched on, there are always some
instructions ready and waiting.

Memory which can contain only data that has been preprogrammed is
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of no use when we want to utilise external memory to store data that the
computer can change. Even the machine's own operating system, which
controls the keyboard and screen and interprets the programs that are
typed into it, needs more registers than the Z80 can supply — it must
remember, for instance, where it last printed something on the screen.
So computers are supplied with random access memory, with which they
can write data to locations for later retrieval. The name refers to the fact
that locations can be accessed for either reading or writing in any order.
(Note that the term random access could be applied to the types of
ROM I have mentioned, but it has come to be used only for the forms of
memory that can be written to.)

The simplest type of RAM can be thought of as a ROM layout with
address lines and decoding circuits but, instead of the links, each piece
of information has a flip-flop arrangement of which the output
represents each `bit' of data. This output is routed to the appropriate
data line when the correct address is fed on to the address bus. Also, the
data bus is bi-directional so, with the aid of two pins to tell the chip
whether to output or input information, the CPU can send data along
with an address to the memory, and it will set the values of the
appropriate flip-flops to those of the data sent.

This kind of memory is called 'static RAM', because as long as it is
receiving a supply voltage it will maintain the pattern of bits that its
internal circuitry is storing. However, this type of memory is expensive
and difficult to make compact. so it will come as no surprise to you to
learn that the Spectrum is equipped with a different breed, called
dynamic memory. This stores data in the form of an electric charge
which, unfortunately, begins to leak away after a short period of time,
so the memory needs the opportunity to refresh the charges by receiving
a request to read each bit before their values are lost.

As I hinted earlier, the Z80 has been equipped to provide refresh
signals during the two clock cycles that occur after a memory fetch
operation has been performed. The R register is used to provide
sequential addresses for the memory circuits to use in conjunction with
the refresh pin. From a user's point of view, there is no difference in the
performance of dynamic or static random access memories.

My main task in this chapter has been to differentiate between RAM
and ROM. The more sceptical amongst you may wish to demonstrate
the differences by following this procedure. Find the contents of a ROM
address, say, location zero, by entering PRINT PEEK 0. Now try to
alter the value stored there to, for instance, 1, by entering POKE 0.1.
Get the computer to PRINT PEEK 0 again, and you will discover that
your efforts have been in vain. Repeat the above operation for the first
RAM address, which is 16384: ie, PRINT PEEK 16384; POKE 16384,1;
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PRINT PEEK,16384. Proof! Incidentally, if you have a 16K Spectrum,
all addresses above 32678 will not react, as there are no memory

locations in that area.

CHAPTER 6
Language for Machines

It is no use sitting down in front of your computer and typing `Play me a
cheerful tune': it simply won't know what you're talking about. You can
write a program that will play any tune you like, but first of all you must
learn how to make the computer understand you. In order to bridge the
gap between machine code and human language, there have been
developed over the years many intermediate languages that can be
entered into a computer and understood by both parties.

BASIC, the language that your Spectrum understands, is short for
Beginners' All-purpose Symbolic Instruction Code, and it is easier to
grasp than any other computer language. Although 'professionals' are
somewhat disparaging about it, it is flexible and universally accepted as
the most popular language. You can if you wish buy other languages
that are more elegant to use and faster to run on your machine but,
unless you're a glutton for punishment, I suggest you stick with BASIC
for now.

I trust that you are familiar with BASIC because it is not within the
scope of this book to explore the finer points of writing programs. If you
have yet to write your own BASIC, you will find that the Spectrum's
manual explains this well. In addition, there are shelves full of books
exploring programming techniques in your local computer shop: before
we proceed, you should teach yourself BASIC.

Interpreting BASIC
So how does BASIC work? The Z80 only understands what the bytes of
data fed into it from memory tell it to do, but not statements such as
PRINT AT 2,5;"HELLO". Imagine that you have written two
programs to beep out on the speaker cheerful and marching music:
organise them as subroutines and you can type, for instance, GOSUB
100 for 'Happy Birthday'. If, at the top of the program, you write
something such as

INPUT A$: IF AS= -Play me a cheerful tune" THEN GOSUB 100:
STOP
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then when you run the program and type in 'Play me a cheerful tune'
your computer will appear to understand you. By adding further lines,
perhaps 'Play me a tune to march to', you may even fool the lay
observer into thinking that your machine has musical taste! However,
your micro is interpreting your instructions not through any thoughtful
process, but rather by simply comparing them with a list it holds, and
responding if your demand tallies with one it recognises. The machine
code program in your Spectrum contains a 'BASIC interpreter' that
works along similar lines. When running, it uses the values of the
'keywords' it encounters to find where the machine needed to perform
that task is stored in ROM, then it GOSUBs that routine. (In machine
code the word CALL is used instead of GOSUB.) Before moving on to
the rather daunting subject of machine code itself, it may help if I
explain what goes on when we switch on a Spectrum and type in

PRINT AT 2,5; "Hello"

and then press ENTER.
Switch on. The Z80 performs a reset, then it executes the op codes

stored, starting from location zero. These are very involved: setting up
the areas of memory, organizing the 'system variables', and generally
putting the house in order. When the Z80 has finished this `system
initialisation' routine, it jumps to the main operating system loop which
waits patiently for someone to press a key. When you do, it knows this
to be either a line number or a keyword — on pressing `P' the operating
system looks up how to spell PRINT and places the letters on the
screen. It also stores the relevant `token' value in an area of memory set
aside called the `edit buffer': each BASIC word has its own token value
and the one for PRINT is 245 decimal. The operating system then
follows the same procedure for the AT.

Now we enter `2,5;' — even more work is involved here, as it stores
the relevant numbers as six bytes of data. (This is actually not necessary
for small numbers such as 2 and 5, but it is required for larger ones.) The
punctuation and string of letters between the quotation marks go into
the buffer in the form of their ASCII codes (you can look these up in
your manual).

When you finally press ENTER, the operating system places an
`ENTER' code at the end of the buffer, then it checks the `syntax' of
what has been entered. If nothing is wrong (ie there is no illicit
combination of codes in the line) it moves on to the next stage;
otherwise it queries the line.

All being well it checks if the data in the buffer starts with a line
number. If it did, the operating system would transfer the string of data
to an area of memory set aside to store BASIC programs for running
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later. As the line you typed in is a direct command, the operating system
passes control to the BASIC interpreter which looks up the first value —
245. It recognises this as a command to pass control to the output
routine at location 10h — this routine handles the ensuing data by
putting it on the screen, dealing with the `AT 2,5;' tokens by moving the
printing coordinates accordingly. When the ENTER token is reached,
the output routine returns control to the interpreter. This. finding the
task complete. prints 'OK 0.1', and causes the Z80 to jump back to the
main operating loop. This example is very simple, but it demonstrates
the importance of the `system software' — without the operating system
(OS) and BASIC language interpreter, the micro would be useless.

Machine code
Now for the enigmatic machine code. Some readers may already have
become familiar with Z80 language, and they will acknowledge that
there is great satisfaction in writing a working program. The drawbacks
are the number of instructions needed to do anything significant, and
the apparently abstract nature of machine code. However, there are
mnemonics to help us remember the function of each code. If you refer
to the listing in Chapter 4, you will see that 62 decimal means `load A
with the next number', which becomes LD A.N. These mnemonics are
often called by the overall title `assembly language', because there are
programs available which will translate the names into the correct
codes, and thereby 'assemble' a machine code program automatically.

In order to assist aspiring machine code users, the next section is
devoted to expanding the assembler mnemonics. Don't attempt to
digest them all in one go. Concentrate on the common ones such as LD,
JR, ADD, SUB and CALL to begin with — a study of some of the
obscure codes will be easier when you encounter them in the context of
a program.

Machine code mnemonics glossary

ADC This instruction can apply to either the A or the HL registers.
Applied to A it means `add the contents of the specified single
byte, and the contents of the carry flag, to A, and leave the
result in A'. Bytes held in single byte GP (general purpose)
registers. memory pointed to by HL or the index registers, or
stored as immediate data in the program, can be added.
Applied to HL, the contents of the register pairs (BC, DE, HL)
or of the stack pointer, are added to HL, along with an extra 1 if
the carry is set, with the result remaining in HL. For example,
ADC A,D adds D to A together with the carry bit.

• •
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ADD This is the same as ADC without including the carry bit. In
addition to A and HL, it can also be used on the index registers.

AND This is a logic operation that can be performed on the A
register. It takes a byte from memory (pointed to by HL or the
index registers), program memory, or a single GP register. and
executes an AND logic test on each bit of A and the
corresponding bit of the specified byte, leaving the result in A.
For example, AND B would AND the contents of B with A. If
A contained 01010101 and B 00001111 binary, the result in A
would be 00000101.

BIT By using this instruction you can test any bit from the GP
registers, and from memory pointed to by either HL or the
index registers, and set the zero flag accordingly. For instance,
BIT 3,(HL) would test bit 3 of the byte held at address HL. and
if it were zero the Z flag would be set; if one, then Z would be
reset. Bits are numbered from 0 to 7. This code is at least two
bytes long, the first byte always being EDh.

CALL The equivalent of GOSUB in BASIC. CALL pushes the
contents of the PC on to the stack, and then loads the PC with
the next two bytes in program memory, causing the Z80 to
execute from that address. See RET to discover how to get
back! CALL can be conditional — for example, CALL Z only
actually occurs if the zero flag is set.

This means `complement carry flag'. The value of the carry flag
is inverted, zero becomes one and vice versa.

This stands for `compare'. Bytes from pointed-to memory, the
next program location, or the GP registers. are subtracted from
the value in the accumulator, and the flags set accordingly, but
the original value of A is restored. If A held 20h. then CP 20
would set the zero flag, but A would remain at 20.

CPD This is a complex instruction. It stands for `compare and
decrement', which is useful for searching a block of memory for
a byte to tally with that in the A register. CPD compares the
byte pointed to b y HL with A, and sets the zero and sign flags
accordingly (sign = 1 if bit 7 of the result is high). Then the
instruction decrements HL and BC, which act as a counter, and
if it reaches zero the P/V (in this case `overflow') flag is set.

CPDR `Compare and decrement with repeat.' This will continue to
perform CPD until either BC has reached zero or the CP
operation has set the Z flag.

CPI	 `Compare and increment'. This is the same as CPD except that
HL has 1 added to it rather than subtracted.

CPIR `Compare and increment with repeat'. As CPDR, except that it
increments HL. These block-searching instructions are very
useful for finding data of a particular value. On completion, HL
will either hold the address of the first match, or the end of the
block if none was found.

CPL This stands for `complement' and applies to the A register only.
All the bits are inverted, thus 00110101 would become
11001010.

DAA This instruction is probably only of use if you are using the
`binary coded decimal' method of storing numbers. An eight-bit
register is split into two nibbles of four bits; each nibble should
only be in the range of 0 to 9. `Decimal accumulator adjust' will
automatically readjust the values in the A register after an
addition or a subtraction in compliance with the rules of binary
coded decimal.

DEC `Decrement' subtracts 1 from the value it is applied to. You may
DEC any eight or 16-bit register, or a byte in memory pointed
to by HL or the index registers. One important point, which if
not known can lead to a frustrating end to first programming
attempts, is that decrementing the 16-bit registers (HL, DE,
BC) will not affect the flags register.

DI `Disable interrupt' this causes the CPU to ignore any `maskable
interrupt' it may receive at its INT pin. Interrupts are covered
elsewhere in this book.

DJNZ This useful code means `decrement and jump if not zero'. It
enables us to use the B register as a counter. It reduces B by 1,
and IF the result does not equal zero, performs a `relative jump'
(see JR). dictated by the next byte from program memory. If
zero has been reached, the operation proceeds to the next
instruction.

EI	 `Enable interrupt' — this cancels the DI instruction.

CCF

CP
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EX This enables you to `exchange' two indicated registers. You
may EX DE, HL, which swops their contents; you may EX the
two bytes pointed to by the SP with those in HL or the index
registers; or, EX AF, AF' will switch control to the alternative

AF pair.

EXX This command brings the alternative registers BC', DE' and
HL' into play, after which any operations are directed towards
them. In order to revert to the original set. simply EXX again.

HALT This command does precisely what is indicated: the CPU will
continue to perform NOP from the time it carries out a HALT
until it receives an interrupt signal.

IMO Refer to the keyboard chapter for a full explanation of
interrupts. IMO sets the Z80 to an interrupt mode not used by
the Spectrum, in which the CPU expects an instruction
(probably an RST) to be placed on the data bus by the device
that has caused interrupt.

IM1

	

	 The correct mode for the Spectrum, IMI always causes an RST
38h instruction to be executed when an interrupt is received.

IM2 This is an interrupt mode that reacts to an interrupt by calling a
subroutine of which the address has previously been stored in
memory. The location looked up in order to find this address is
determined as follows. The high order byte is taken to be the
contents of the I register, and the low byte is taken from the
data bus.

All the above interrupt mode instructions change the method of
dealing with a maskable interrupt. The non-maskable interrupt
always performs an RST 66h type of operation and, as its name
indicates, it is unaffected by the DI instruction.

IN This reads a byte from external circuits that are 'port
addressed'. It does so by placing the port address on the eight
low address lines, making IORQ and RD active, and then
placing the byte collected on the data bus in the specified
register. IN takes two forms: IN A,(port), which has the port
number contained in the next byte of program memory with A
holding the result; and IN reg (C), for which the byte in C is
used as the port address, and reg can be any GP register.
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'Increment' adds one to the value held in a specified register —
the same rules apply as for DEC.

These are a group of input instructions that serve the same
purpose for IN as the CPD group does for comparing, and the
LDD group for loading. IND transfers the contents of the port
specified by the C register to the memory location whose address
is pointed to by the HL register pair. HL is then decremented,
and so too is the B register. If the latter reaches zero then the Z
flag is set. INDR is the repeating version. It continues to
transfer the data at port (C) to the area of memory through
which the HL pointer is being decremented, until B reaches
zero. INI and INIR function like IND and INDR respectively,
except that HL is incremented rather than decremented.

JP `Jump' allows the program counter to be loaded with a new
value, which results in the operation of the program moving
elsewhere. There are three alternatives: you may jump to the
address indicated in the next two program bytes; perform a
conditional JP, which will only occur if a flag test holds true (ie
JP NC, 6000h will load the PC with 6000h, but only if the carry
flag is not set); or do an indexed jump, which loads the PC with
the value held by HL, IX or IY.

JR `Jump relative' allows you to modify the contents of the PC by
adding or subtracting a seven-bit value to the low byte of the
PC. The required value is stored in the next byte of program
memory. If the byte contains less than 127, it is added to the
value of the PC, but only after the automatic increment
following the fetching procedure. Therefore, JR 0 would have
no effect, whilst JR 1 would make the CPU omit a byte before
fetching its next op code.

If bit 7 of the 'displacement byte' is 1 (in other words, if the
number is greater than 127) this value is treated by a convention
known as the `two's complement', which allows us to generate
negative numbers. For example, FEh (254 dec) as a two's
complement is —2. If you complement (see CPL) the
displacement byte and add one, you will arrive at a value which
is to be subtracted from the PC. Thus JR FEh (254 dec) forces
the CPU to jump back two locations where it will encounter the
same instruction, thereby creating an endless loop.

You can also use JR as a conditional instruction, but it can
only test a limited number of flags, JR Z, JR NZ, JR C and JR
NC. However. JR is often preferable to JP because, as well as

INC

IND
INDR
INI
INIR
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being one byte shorter in length, its use absolves the
programmer from writing code that must reside in a particular
area of memory. JP needs to be accompanied by the actual
address, whereas JR only modifies the current value in the PC.

LD This is the most common op .code of all, `load'. First
impressions may suggest that you can load anything with
everything, but there are some limitations! In its simplest form
LD A, B will transfer the value stored in B and place it in A,
destroying the byte previously held in A. Let's systematically go
through the load codes that are available.

You may load any eight-bit GP register with 'immediate'
data: that is, data stored in the next location in program
memory.

All the 16-bit registers (except PC) can be loaded with
immediate data stored as the next two bytes of program. See,
later, the note about how two-byte values are handled by the
Z80.

External memory, of which the address is held in the HL or
index registers (IX and IY plus a displacement, to be explained
later), can also be loaded with immediate data, ie LD (HL),
FFh.

It is possible to load the contents of any GP eight-bit register
with the contents of any other.

The two special eight-bit registers, I and R, can be loaded
with the value in A, and A can be loaded with their contents.

You can only transfer 16-bit values from the double registers
on to SP (however, refer to EX). To transfer the contents of,
say, BC to DE you can, of course, use LD D, B then LD E, C.

Data pointed to by the addresses held in HL or the index
registers can be loaded into any eight-bit GP register.

The contents of any eight-bit GP register can be loaded into
external memory if the address of the location is held in HL or
the index registers.

The A register can also use BC and DE as memory pointers:
so LD A, (BC) will load the contents of the address held in BC
into the accumulator, and LD (DE), A will load the address
held by DE with the value of A.

The extra flexibility of A is shown by the instructions LD A,
(ADDR) and LD (ADDR), A. Here ADDR is a two-byte
value stored as immediate data in the next two program
locations. This is fetched and used as a memory pointer, so LD
A, (0000h) will load A with the bytes of data stored at location
zero.

Finally, this technique of using immediate data as a memory
pointer can be applied to the 16-bit registers. For example, LD
(ADDR), BC will store the contents of BC at two locations
indicated by ADDR and ADDR+1.

LD is fairly extensive, but not infinite! For example, it is not
possible to do LD (ADDR), (another ADDR). This would
require something similar to: LD HL, (another ADDR), then
LD (ADDR), HL. Also note that no load instruction alters the
flags.

LDD This is a complex instruction similar to CPD. It causes the CPU
to transfer the data held at the address stored in HL to the
address stored in DE. It then decrements the BC, DE and HL
registers. If BC becomes zero then the P/V flag is set.

LDDR As LDD, but with automatic repeat if BC is not zero. You can
use this op code to transfer a block of data from one area of
memory to another by loading the following: HL with the last
address of the block you want to move: DE with the last address
of the destination you require to fill: BC with the number of
bytes to be transferred. LDDR will then carry out the move,
and the data will now be in both areas of memory you have
chosen.

LDR As LDD but the HL and DE registers are incremented instead
of decremented.

LDIR The auto-repeating version of LDI. By choosing either LDDR
or LDIR you can fill your new area from the `top down' or the
`bottom up', which is important if blocks overlap.

NEG This is an accumulator-only op code. It transforms the value in
A into the negative two's complement value of the original
contents by complementing and adding one. When not dealing
with two's complement arithmetic, a program may use this
instruction as a quick way of subtracting a value from zero.

NOP `No operation'. When the CPU fetches this code it does nothing
except increment the PC as always — surprisingly useful,
especially during program development.

OR This is a logic op code that can take a byte of immediate data,
the contents of a GP register, or a value from memory pointed
to by HL, IX or IY, and perform a bit-by-bit ORing test
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between the byte and the A register. The result is left in A, and
the flags are set accordingly. For example, if A contains
00001111 binary, OR 83h (10000011 binary) will have the result
10001111 in A.

OUT The write version of IN. The same rules apply, except that the
data is sent from the register to the specified port.

OUTD This group of instructions is the complement of the IND group.
OUTI The contents of the memory location pointed to by HL are
OTDR output to port (C). HL is then decremented or incremented. B
OTIR is decremented, and if the instruction is a repeating one, the

action is carried out until B reaches zero.

POP This is an op code associated with the stack, which is the area of
external memory reserved for the CPU's own use: it stores the
return addresses for CALL instructions there. POP takes the
previous two bytes stored in this area and loads them into the
specified register pair (AF, BC, DE, HL, IX, IY). The stack
pointer is then incremented twice, leaving it pointing at the next
two bytes to be POPed. Stack operations are dealt with later.

PUSH This reverses the POP procedure: it decrements the SP twice,
depositing the contents of the specified register pair at the
memory addresses created in the process.

RES 'Reset' to zero. The value of any bit of a byte stored in the GP
registers or at a memory location pointed to by either HL or the
index registers, can be reset to zero. RES 1,A will make bit 1 of
the A register become zero.

RET `Return' from a CALL: this is used at the end of a subroutine in
order to return to the original routine. RET retrieves the
address that was pushed on to the stack by the CALL op code,
and places it in the PC, thereby forcing a jump to that location.
Take care if you tamper with the stack or the SP during the
subroutine — you may cause the correct address to become
irretrievable. This can sometimes be used on purpose, for
example to find the value of the PC.

RETI This is a special RET instruction for use at the end of a
subroutine called in response to a maskable interrupt. It acts as
a normal RET but, in addition, signals sent via the control bus
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indicate to the interrupting device that the interrupt has been
`serviced'.

RETN Return from a non-maskable interrupt.

RL This is the first of a set of 'rotate and shift' codes that are best
described graphically: refer to Table 6.1 for a fuller explana-
tion. However, briefly, RL rotates a byte of data left through
the carry flag. The highest bit, bit 7, is placed in the carry flag,
and bit 6 shuffles over to replace it. All the bits move along one
place, and bit 0 is filled with the old value of the carry bit.
Unless otherwise stated, all shift and rotate codes can be
applied to any GP register or byte in memory pointed to by HL
and the index registers.

RLA An exception to the above rule, RLA can only be applied to the
A register. It behaves in the same way as RL except that no
flags other than carry are affected. The rotates that end with 'A'
are all only one byte long and are quicker to execute than the
others.

RLC 'Rotate left circular' is similar to RL. It differs in that bit 7 is
copied into bit 0 as well as the carry, the original value of which
is lost.

RLCA A circular version of RLA.

RR	 `Rotate right'. Palpably, RL the other way!

RRA These are the rotate right versions of RLA, RLC and RLCA.
RRC
RRCA

These are alphabetically out of order because they are not
normal rotate instructions. RLD stands for 'rotate left decimal'.
It is used in conjunction with binary coded decimal arithmetic,
or in certain cases where you wish to rotate a value by four bits.
The HL register must point to the memory location you wish to
rotate. The low four bits (or nibble) of the accumulator are
placed in the low nibble of the memory location. The contents
of the low nibble are placed in the high four bits, the previous
contents of which are transferred to the low nibble of the A
register. RRD is the same except it rotates in the other
direction.

• •
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RST This is not a rotate instruction! It stands for `restart'. There are
eight RST op codes, each of which perform a CALL to one of
these specific addresses: 0, 8, 16, 24, 32, 40, 48 and 56 decimal.
The RST code is only one byte long, and it is used extensively in
the ROM to call frequently-used routines.

SBC	 `Subtract with carry'. As ADC, except that a subtraction is
performed.

SCF	 `Set the carry flag'. Causes the carry flag to become 1, whatever
its previous value.

SET	 See RES. SET makes the specified bit 1.

SLA	 `Shift left arithmetic'. This is the first of three shift codes. See
RL and Table 7.

SRA	 'Shift right arithmetic.'

SRL	 'Shift right logical.'

SUB This is an eight-bit only op code that subtracts the contents of
either a GP register, or external memory pointed to by HL or
the index registers, from the A register. It leaves the result in A
and sets the flags. If you wish to perform a 16-bit SUB then you
can use SBC having previously reset the carry flag: AND A is
the quickest way to achieve this.

XOR This exotic sounding instruction stands for `exclusive OR', and
is in the same mould as AND and OR. It has a logic one result
only if the two bits tested are different from each other: thus
both two Os and two is will result in a 0. It will crop up often as
XOR A because this is the easiest wa y to zero the accumulator.

The index registers, flags and stack: notes to accompany the
glossary
The index registers, IX and IY, are often used as memory pointers. Op
codes that use them take the form ID A,(IX+displacement byte)',
where `displacement byte' is a two's complement number (see JR) that
is added to the index register, before the value is used as a memory
pointer to access a location in memory. Hence, if we load an index
register with a suitable number at the start of a program, we can have
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Table 6.1	 BITS

RL/RLA

RLC/RLCA

RR/RRA

RRC/RRCA     

6 5 4 3 1           

>                                                                                                        

<1                                     

C                                                                                                                                     

SRL
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quick and simple use of a block of memory consisting of 255 bytes
centred on a selected value.

Spectrum system software uses the IY register to get at the system
variables, so it must always be restored to its correct value before there
is a return to the operating system. Op code values can be calculated
from the equivalent (HL) code, as DDh is the prefix for IX and FDh for
IY. The displacement byte is inserted after the (HL) op code value, so,
in order to transform OR (HL) into OR (IX+2), for instance, the
one-byte code B6h would become the three-byte code DD B6 02 h.

A word about flags. The carr y flag is useful for testing to see if one
value is greater than another — comparing A with 10 will set the carry to
1 if A contains less than 10. The P/V flag has a number of functions: it is
used to test for 'overflows' when performing two's complement
arithmetic; it reflects the 'parity' of the result of a logic operation, with
an even number of ones in the accumulator setting the flag; it is used by
the block op codes as a supplementary zero flag. Also remember that
you can change the value of flags accidentally with the POP AF and EX
AF AF'.

One quirk of Z80 code that may confuse you is its method of storing
two-byte numbers in external memory. It places the low byte in the first
location and the high byte in the next. In the case of LD HL,0100, this
would be stored in memory as 21,00,01. The second byte represents the
eight high bits of the value.

Finally we come to the stack. Think of this as a pile of cards: putting a
value on the stack means that it goes on the top of the pile, so that if we
were to pick up, or POP, the top card it would always be the last one put
down, or the last one exposed when the previous card was taken. The
stack pointer holds the address of the next card to be POPed. On the
Z80, the SP is decremented before a PUSH, so the stack grows `top
down'.

Monitor program
If you are interested in writing complex programs, an assembler
program and reference book would be a good investment. To give you a
taste, however, the above glossary, together with the list of op codes in
the `Character Set' chapter of the Spectrum manual will suffice.
Program 6.1 is a BASIC program that you can use to enter decimal or
hexadecimal data into memory, check what you have done, alter, save,
and run the machine code you have created. It contains its own
operating instructions, so enter it and save it carefully. After running
one of your programs, it prints the value left in the BC register, so load
that with any result you wish to examine. Try exploring what the various
op codes do, especially the conditional and rotate ones.

Program 6.1: Monitor

	1 REM	 MONITOR PROGRAM
2 REM

	

5 REM	 For pound sign read

	

6 REM	 read hash symbol
7 REM

10 GO TO 9000
11 REM

	

12 REM	 Format 1 byte
1 REM
20 IF NOT h THEN LET a$=" "+ STR$ a

: LET a$=a$( LEN a$-2 TO ): RETURN
.0 LET a$="

	

40 FOR	 LEN a$ TO 1 STEP --1: LET b=a
- INT (a/16)*•16: LET a$(;:)= CHR$ (b+48+7
*(b;9)) : LEA a= INT (a/16) : NEXT x: RETU
RN

50 REM

	

51 REM	 Format 2 bytes
52 REM
60 IF NOT h THEN LET a$="	 "+ STR$

a: LET a$=a.$ ( LEN a$ •-4 TO ) : RETURN
Iii LET a$="	 ' : GO TO 40

100 REM

	

101 REM	 Input n
102 REM
110 LET a$r "Invalid numbervtry again"
120 REM

	

121 REM	 Start here
122 REM
I.:0 LET n=0: INPUT (a$+" '); LINE b$
140 FOR .:=1 TO LEN b$: LET b= CODE b$(
,) - 18: IF h THEN GO To 170
150 1F b 0 OR b ;'•9 THEN GO TO 110
160 LET n== INT n + b* 10' ( LEN b$--0: NEXT

RETURN
170 IF ti 0 OR b::9 AND b 17 OR b22 TI-lEN
GO TO :1 10

180 LET b=b- • 7*(b:>9): LET n=. INT n+b*•16`'
( LEN b$—;): NEXT ;:: RETURN

.00 REM

	

20 1 REM	 Get. 1
2 ,1'2 REM
2lo GO SUB :120: IF n <::ri OR n)>655:G THEN

54 55



LET a$=^^: GO TO 210
220 RETURN
1000 REM
1001 REM	 EXAMINE
1002 REM
1010 CLS : PRINT I^VERSE 1;"M"; INVERSE
0;"enu,"; INVERSE 1;"N": INVERSE 0;"ewa

ddress,^; INVERSE 1;"A"; INVERSE 0;^lter
,^; INVERSE 1;^6&7"; INVERSE 0;" scroll"
: LET a$=z$
1020 GO SUB 200: IF n>^551^ THEN LET a$
="Too high;re-enter": GO TO 1020
1030 LET c=Ö: LET l=n: PRINT AT 2,0;: F
OR y=0 TO 19: LET p^y: GO SUB 1210: NEXT

y: GO SUB 11^0
1040 LET a$= INKEY$ : IF a$="A" THEN GO
TO 11n0
1050 IF a$="6^ THEN GO TO 1130
1060 IF a$=^7" THEN GO TO 1160
1070 IF a$="M" THEN CLS : RETURN
1080 IF a$="N" THEN GO SUB 12V0: LET a$
=z$: GO TO 1020
1090 GO TO 1040
1100 LET a$="New va1ue"
1110 G^ SUB 120: IF n>255 THEN LET a$=y
$: GO TO 1110
1120 POKE l+c,n: LET p=c: GO SUB 121V
1130 IF c <> 19 THEN GO SUB 1200: LET c
~c+1: GO SUB 1190: GO TO 1040
1140 IF l^65^15 THEN GO TO 1040
1150 LET l=l+1: RANDOMIZE USR 23335: 6O
SUB 1190: LET p=c: GO SUB 1210: GO TO 1

040
1160 IF c <> 0 THEN GO SUB 1200: LET c=
c-1: GO SUB 1190: GO TO 1040
1170 IF NOT l THEN GO TO 1040
1180 LET l=l-1: RANDOMIZE USR 23350: LE
T p=c: GO SUB 1210: GO TO 1040
1190 PRINT HT c+2,0;^Address>>"; AT c+2
,22;"<<Contenrs^: RETURN
1200 PRINT AT c+2,0; TAB 9; AT c+2,22,:

RETURN
1210 LET a=l+p: GO SUB 50: PRINT AT p+2
,9,a$;"	 ";: LET a= PEEK (l+p): GO SU

^

B 20: PRINT a$: RETURN
2000 REM
2001 REM	 ENTER CODE
2002 REM
2010 CLS : PRINT ^Mo^e 2 allows vou to e
nter code"; AT 4,2;^ENTER A VALUE OUT OF

RANGE TO"' TAB 7;^^ETURN TO THE MENU^;
AT 10 ^ 2;"Current address ^ "
2020 LET a$=z$: GO SUB 200: LET l=n
2030 LET a=l: GO SUB 50: PRINT AT 10,20
;a^: LET a^="Code": GO SUB 120: IF n<0 O
R n>255 THEN RETURN
2O40 POKE l,n: LET l^l+1*(l<65535): GO T
O 2030
3000 REM
30O1 REM	 SAVE CODE
3002 REM
301V CLS : PRINT "Mo^e 3 w1ll save code
on tape^
3O2V LET a^=z$: GO SUB 200: LET l=n: LET
a=n: GO SUG 50: PnINT AT ^,4;z^;" ^ ";

a$
3030 LET a$="Number of bytes": GO SUB 2V
0: LET s^n: LET a=n: GO SÜB 50: PRINT A
T 8,2;^Length of block = ^;a$
3040 INPUT "Name of file ";a$: SAVE a$ C
ODE l,s
3050 PRINT AT 12,3;"REWIND TAPE AND CHE
CK ^' TAB 6;a$;": VERIFY a$ CODE l,s
3060 INPUT ^O.K. --- Press enter for men
u";a$: RETURN
4000 REM
4001 REM	 RUN CODE
4002 REM
4010 CLS : PRINT "Mode 4 will run machin
e code"
4020 LET a$^z$: GO SUB 200: LET a=n: GO
SUB 50: PRINT AT 6,3;"T^e code will be
run from^; AT 8,12;a^; ^T 12,3;^Press :-

R to run code"; AT 14,13;"N to change
address"; AT 16,13;^M for the menu"
4030 LET a$= INKEY$ : IF a$="M^ THEN RE
TURN
4040 IF a$="N" THEN GO TO 4010

^
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4050 IF a$ <> "R" THEN GO TO 4030
4060 CLS : PRINT USR n: INPUT "Code has
run;press enter";a$: RETURN

5000 REM
5001 REM	 CHANGE BASE
5002 REM
5010 CLS : PRINT AT 3,2; " The Monitor pr
ogram now works " ; AT 5,4;^with numbers t
o the base": IF h THEN GO TO 5030
5020 LET h=1: PRINT AT 8,12;"SIXTEEN":
GO TO 5040
5030 LET h=0: PRINT AT 8,14;^TEN":
5040 INPUT "Press ENTER for the menu^;a$
: RETURN
6000 REM
6001 REM	 CONVERT NUMBER
6002 REM
6010 LET t=h: CLS : PRINT HT 4,6;"TO CO
NVERT:–^; AT 8,5;^Hex to decimal press H
^; AT 10,5;^Decimal to hex press D"; AT
15,7;"For the menu press M^
6020 LET a$= INKE;$ : IF a$="^ THEN GO
TO 6020
6030 IF a$=^M^ THENIF
6040 IF a$="D" THENIF

6050 IF a$="H^ THEN
6060 GO TO 6020

h=06070 LET a$=^Decimal ^ : LET
6080 GO SUB 200
6090 LET a=n: LET h=1: GO SUB 60: PRINT
£1;^Hex = ^;a$: GO TO 6020
6100 LET a$="Hex": LET h=1
6110 GO SUB 200
6120 PRINT £1:"Decimal = ^;n: GO TO 6020
8000 REM
8001 REM	 MENU
8002 REM
8010 CLS : PRINT AT 1,6;^MACHINE CODE M
ONITOR^: PLOT 46,158: DRAW 163,0
8020 PRINT AT 3,6;^Press the number for
"; AT 4,6;"the desired function"
8030 RESTORE : FOR x=1 TO 6: READ a$: PR
INT AT x*2+6,5;x;^ ----- ";a$: NEXT x
8040 LET a= CODE INKEY$ –48: IF a<1 OR

•

LET h=t: RETURN
GO TO 6070
BO TO 6100
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a>6 THEN GO TO 8040
8050 GO SUB a*1000: GO TO 8000
8060 DATA "Examine Memory","Enter code",
"Save Code","Run Code^,^Change Base","Co
nvert Number"
9000 REM
9001 REM	 Set up
9002 REM
9010 INK 7: PAPER 1: BORDER 1: POKE 2365
8,8
9020 LET h=0^ LET z$ = "Start address": LE
T y$="Out of range;try again"
9030 RESTORE 9200: FOR x = 23296 TO 23364:

READ a: POKE x,a: NEXT x
9100 GO TO 8000
9200 DATA 245,230,24,246,64,103,241,245,
230,7,15,15,15,198,9,111,241,201
9210 DATA 205,0,91,6,8,197,1,13,0,213,22
9,237,176,225,209,36,20,193,16°241,201
9220 DATA 62^2,205,0,91,235,60,205,18,91
,254,21,32,244,201
9230 DATA 62,21,205,0,91,235,61,205,18,9
1,254,2,32,244,201

Now for a challenge! Without looking at Table 6.2, compile a program
that fires an arrow across the top line of the screen. You will need to
know the following:

1. RST0b (code D7) will call the ROM's print routine and place the
symbol of the code held in the A register on the screen at the
current print position.

2. You can change the current print position (it is automatically
updated by the print routine) by sending 16h (the AT code) in A m
the print routine (RST l0b again). You should then follow it with
	  the new print coord inates —for example, LD A,16h, RST lOh, LD

A,O, RSTl0b.LD A.0. RST lOb. will set the print position to the
top lefthand co,o er.

3. The code for the arrow can be 3Eh (the 'greater than' sign).

4. You will have to incorporate a 16-bit delay loop if you are to see the
arrow travel!
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The 'answer' I have provided in Table 6.2 is not the sole possibility. You
should be able to improve on it when you know the ropes. Have fun!

Table 6.2

Address	 Hex Code	 Assembler
7F80	 012000	 LD BC,0020h
7F83	 110100	 LD DE,0001h

7F86	 6A	 LD L,D
7F87	 CDA97F	 CALL 7FA9h
7F8A	 3E3E	 LD A,3Eh

7F8C	 D7	 RST lOh

7F8D	 61	 LD H,C
7F8E	 10FE	 DJNZ —2

7F90	 25	 DEC H
7F91	 20FB	 JR NZ,-5
7F93	 6A	 LD L.D
7F94	 CDA97F	 CALL 7FA9
7F97	 3E20	 LD A.20h
7F99	 D7	 RST lOh
7F9A	 6B	 LD L,E
7F9B	 CDA97F	 CALL 7FA9h
7F9E	 3E3E	 LD A,3Eh
7FAO	 D7	 RST lOh
7FA1	 14	 INC D
7FA2	 1C	 INC E
7FA3	 7B	 LD A,E
7FA4	 FE20	 CP 20h
7FA6	 20E5	 JR NZ,-27dec
7FA8	 C9	 RET
7FA9	 3E16	 LD A,16h
7FAB	 D7	 RST lOh
7FAC	 AF	 XOR A
7FAD	 D7	 RST lOh
7FAE	 7D	 LD A,L
7FAF	 D7	 RST lOh
7FB0	 C9	 RET

60 61



•
CHAPTER 7
Introducing the Spectrum

In the first section I described the general concepts of microcomputers
from first principles. Now it is time to examine the workings of the
Sinclair Spectrum computer specifically. There are two models
available, but the only difference between them is that one contains 16K
of RAM and the other 48K. The additional memory gives the scope for
larger programs to be run and useful quantities of extra data to be stored
`on board'.

The Spectrum was one of the first colour computers available at a
realistic price to the average consumer in Britain. Much of its design has
been developed from its predecessors, the ZX80 and ZX81, both of
which utilise the same Z80 microprocessor.

The ZX80 was the first complete computer available for under £100
— it was unable to produce a TV display and compute at the same time,
it possessed 4K of ROM containing the operating system and a simple
form of BASIC, and included just 1K of RAM, paltry by today's
standards and rather modest even in 1980. It was a success even with
these limitations, because it sold to people who wanted an off-the-shelf
(or rather `through-the-letter-box') computer aimed at novices and
priced accordingly.

The ZX80 was soon replaced by the much improved, mil'.ion-selling
ZX81, with 8K of ROM and a 'slow' mode which maintained the screen
display at the expense of very slow operation. These enhancements
were combined with a price cut of £20. Soon Sinclair's silent, black and
white membrane keyboarded computer was selling like hot cakes and
opening up new markets, not only for computers but also for software,
books and magazines.

The Spectrum's facilities
May 1982 saw the launch of the Spectrum. It seemed to represent a vast
improvement on its predecessor, and in terms of value for money, it was
well ahead of the competition — a 16K model was only £5 dearer than a
ZX81 with RAM pack. Let's look at some of the noteworthy facilities
offered by the Spectrum.

•
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1. A high resolution video display that can be viewed on an ordinary
domestic television set. It has a resolution of 256 by 192 dots, and it can
print 32 characters in each of its 24 lines of text. Each character space
can be displayed as two different colours, termed PAPER and INK and
both of these can be one of eight colours — black, blue, red, magenta,
green, cyan, yellow and white. In addition, any space can be set to
BRIGHT, which increases the luminance, or FLASH, which swops
PAPER and INK values at a fixed rate. Software allows drawing to an
accuracy of one dot, or `pixel', on the upper 22 lines of the screen, and
the use of 'user-defined' graphic shapes. The screen data is memory
mapped, meaning that the display is copied from RAM which is
addressed by the address bus, and it occupies over 6K of the memory
that would otherwise be available to the programmer.

2. A BEEP facility which allows the creation of simple tones with
BASIC, and more complex effects from machine code programs. The
sound emerges from a small speaker built into the case. Although quiet,
the ear socket can be used to feed an external speaker.

3. An interface makes possible the use of an ordinary audio cassette
player as a storage medium. BASIC programs, data and machine code
can be saved on normal cassettes, and loaded back into the computer via
the MIC and EAR sockets with the supplied lead. The cassette port uses
a 'Schmitt trigger' in its circuitry, which enhances reliability so that the
data can be transferred at a rate of about 1200 'baud' — fast in
comparison with some other machines. The creation of the serial data is
handled by the system software, which also supports 'verify', a
command that checks that a good recording has been made.

4. A BASIC interpreter accompanies the machine's operating system in
ROM. It is a development of the ZX80 and ZX81 BASIC with provision
for multi-dimension arrays, a full expression evaluator, floating point
arithmetic and syntax checking that occurs on line entry. String slicing is
implemented by a TO function — for example, if A$ is 'hello', then
A$(2 TO 4) would be `ell'. BASIC lines are entered from the keyboard
by a 'single key' method: each key has up to five different meanings for
the operating system, depending on where in the BASIC line the key
has been entered, and on the use of the shift keys. As a dialect of
BASIC it is excellent for first-time users.

5. A provision to drive a 'port mapped'. low cost printer. The printer is
controlled by software, thereby simplifying the interface, and was
previously sold for use with the ZX81.
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6. The keyboard consists of moving rubber keys that are spaced at
typewriter pitch. This may not seem much to boast about. but for users
of the ZX81 it is a vast improvement.

7. The provision to run a new type of low cost mass storage device called
a 'microdrive'. When these finally appeared on the market. it transpired
that they consisted of high quality magnetic tape cartridges which travel
at high speed. The performance approximates that of 'floppy disk
drives', the cost is less than half.

Numerous hardware additions to the Spectrum are available, but there
are two from Sinclair Research themselves. The Interface 1 is required
to control the microdrives and it also provides an RS232 interface and
network capability. The Interface 2 hosts program cartridges and allows
two joysticks to be used.

The above specifications combined with low prices have led to the
domination of the UK home computer market by Sinclair Spectrum.
Before Christmas 1983, the millionth machine rolled off the production
line and there were no signs of any waning in the computer's popularity.

Hardware structure

The structure of the hardware of the Spectrum is represented in Figure
7.1. If you were to compare this with the actual circuit board inside the
case, there would not at first appear to be any resemblance, yet, apart
from some small components that cloud the picture. the main features
can be identified.

The most obvious is the microprocessor itself. This is a Z80 A — a
version of the Z80 which is capable of running with a higher clock
frequency than the standard model. An eight-bit wide data bus runs
around the board from the microprocessor to the other main
components, occasionally being buffered from conflicts by appropriate
resistors and diodes. The 16-bit address bus does the same.

The remaining major part of the system is a 40-pin integrated circuit.
This `ULA' chip can be said to perform, with some exceptions, anything
that the CPU is unable to do. It is a custom-manufactured workhorse
that provides the means of generating a video display — it carries out
the more exotic forms of address decoding and all the port address
decoding, it provides the clock signal, and more.

The initials represent `uncommitted logic array' — this is a method of
producing, from a standard substance, custom-made integrated circuits
for a specific job. The chip manufacturers make a package that contains
all the building blocks required for a complex circuit — gates, flip-flops,
inverters, buffers, etc. The final task of interconnecting them, using a
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Figure 7.1: Spectrum System Layout

photographic etching method, is left until the required design is finalised
with their customers. This makes the job of building a chip to fulfil a
specific function much cheaper than using discrete components,
especially if large numbers will be required.

There is nothing `magical' inside the Sinclair ULA. Its role could be
undertaken by a collection of logic chips, although the space these
would occupy might demand a huge circuit board — the factors of size
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and cost work to the advantage of custom-built chips. The ULA is
attached to both the data and address buses, and it also receives most of
the Z80's control signals. With this information, it generates more
specific signals of its own which control the whole computer.

Found in close proximity to it on the board is a 'crystal'. This is the
external component of the oscillator inside the ULA: the oscillator
generates the clock signal for the CPU and the ULA itself. Other
connections to the workhorse include the EAR input socket through
which serial data can be fed in from a cassette recorder. Outputs include '
the video and colour signals, the feed to the MIC socket for recording
data, and signals to activate the speaker and keyboard.

A ROM chip is the next most obvious thing on the circuit board. It is
capable of storing 128K bits, that is, 16K bytes. This is the home of the
system software, permanently etched as connections in silicon. The chip
is linked to both address and data buses — its chip enable signal comes
from the ULA.

The 48K machine possesses 16 RAM chips, the smaller computer only
8. How the extra eight chips of the larger model are housed depends on
the age of your machine. The standard complement of 16K bytes of
RAM is made up from eight 4116 16K bit dynamic RAM chips,
arranged so that each chip contributes to one line of the data bus: thus a
byte of data stored at a particular address will have each individual bit
stored in a different RAM chip. This first 16K of RAM is treated to its
own address lines because the ULA chip needs to access that area of
memory independently of the CPU, in order to collect data to be sent to
the screen. To facilitate this, chips known as 'multiplexers' (74 LS 157)
are used. They have two inputs for each bit of the address bus, one from
the Z80 bus and one fed directly from the ULA. A control signal from
the ULA determines which of these is passed on to the RAM chips.

Feeding a domestic television requires a good deal of electronics. Not
only must the colour and luminance signals be combined with suitable
synchronising pulses and coded into one 'composite video' signal, but
also that signal must be 'modulated'. This process imitates the workings
of a television transmitter; consequently, the area of the circuit board
which does the 'transmitting' is enclosed in a metal screening can, so
that the computer will not appear on the airwaves. A weak but identical
version of the signals picked up by your TV aerial is then passed down a
screened lead to the aerial socket on your set. As you know, different
TV stations broadcast on different channels: the Spectrum, in common
with most computers, transmits on channel 36.

Most of the remaining components are concerned either with
buffering the various signals between the major areas of the circuit
board and the connectors, or with providing the correct supply voltages
without which the integrated circuits could not function. The voltage
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which is supplied by the external mains adaptor is 9 volts, but many of
the chips need only 5 volts to function, and any more would cause
damage: other chips require +5, +12 and —12 voltages, relative to their
GRN pins.

A word of advice for the incurably inquisitive amongst you: if you
take your machine apart to investigate inside, you will almost certainly
invalidate any guarantee that the makers or suppliers offer, but you are
unlikely to do any damage if you take care. Wait for the warranty to
expire if you can possibly contain yourself.

The computer is held together by five cross-headed self-tapping
screws located underneath the case. Having pulled out the power plug
and removed the screws, turn the computer the right way up before
lifting off the top half. Be gentle! The keyboard is connected to the
lower part by two very fragile ribbon cables. These can be pulled gently
from their sockets to allow the complete removal of the top. Now you
can snoop away to your heart's content. However, don't drop anything
inside, particularly if it's metal. Another screw holds the printed circuit
board to the lower part of the case, but there is little underneath other
than copper tracks. When reinserting the tails of the ribbon cables
before reassembling the computer, take great care not to kink them as
they will bend all too easily and may fracture. And don't leave anything
inside!

•
CHAPTER 8
The Memory Map

The most prevalent limitation that the majority of microprocessors
impose on the design of computers is the size of the address bus. With
64K bytes at their disposal, early microcomputers had room to spare,
but, with the falling price of memory chips and the demand for
increased storage space, recent products often use all their available
addresses. The 48K Spectrum falls into this category. The layout of
memory addresses is termed the memory map — on the Sinclair
Spectrum this is allocated as follows.

Between addresses 0 and 16383 decimal (0000h to 3FFFh), a 16K
ROM holds the system software (including the routines that provide
input and output via keyboard. screen and speaker) and the BASIC
language interpreter. RAM is found between 16384 and the top of the
map. In the 16K machine, this extends only as far as 32767 (7FFFh), and
the remaining addresses are vacant. The 48K computer has RAM at all
the addresses up to 65535 (FFFFh): on both machines, not all the RAM
locations are available to the user. Study the memory map in Figure 8.1,
and you will see that, from 4000h upwards, a great deal of space is taken
up before the location marked PROG, which is the storing place for the
beginning of any BASIC program entered. (Please note that this figure
is not drawn to scale.)

The pixel data for the screen is stored between 4000h and 57FFh,
which is called the `display file' — this holds the information that
remembers whether any dot of the screen is paper or ink. It makes use
of a large area, 6K bytes, but that is the penalty for good graphics.
Starting at 5800h is another file for display purposes. the attributes file.
It is worth repeating that the colour resolution of the Spectrum is low,
and 300h bytes are sufficient for the data which instigates the ULA chip
to generate the colour part of the picture.

Immediately following the attributes, is a 100h block of memory
called the printer buffer: this is used in conjunction with software to
drive the low-cost printer available for Sinclair machines. It is in the
buffer that a line of text is translated into eight lines of 256 pixels
producing the character shapes. This data is then sent to the printer as a
serial stream of ONs and OFFs, which controls the stylus of the printer
as it travels across the paper.
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System variables
The next block of addresses, called the system variables, is concerned
with the running of the machine's own system software. Any program
which is held totally in ROM is hampered by the fact that it cannot store
variables within its own memory area, except for the few bytes it can
keep in the registers of the processor, which are unused by the program
itself. It may, of course, lodge the bytes on the stack, but retrieving
them at random is impossible. Consequently, the area of memory from

5000h to 5CB6h, is set aside for storing such information as the current
colours to be used for printing to the screen; where the BASIC program
has stored its variables; or even, where the BASIC program itself starts
(this moves about when extra equipment is attached to the computer).

You will find a list of the system variables in the manual — the list
indicates briefly what the data is that they store. Some can be altered by
the programmer to achieve the desired effect, changing others will cause
a peremptory crash of the whole machine. RAMTOP, the variable at
5C82h, for instance, can be POKEd with a lower value to deceive the
computer about the existence of memor y locations — normally, when
the command NEW is carried out, all memory is wiped clean, but with
this device the locations above your RAMTOP wil not be affected. On
the other hand, if you POKEd a different value into PROG, the address
at which the BASIC program starts, the interpreter will fail to find the
program when you RUN. causing a crash. (You may just be lucky and
POKE in a value that is the start of a line in the program, but still any
earlier lines will be lost.)

It is worth noting that the values held by the two-byte system
variables are stored in the manner of the Z80 itself — that is, the least
significant byte first. Let me give an example that also shows the
advantage of using hexadecimal numbers.

PROG stores an address. It is a 16-bit number, so it needs two bytes
of memory space, 5C52h and 5C43h. If the BASIC is in its normal place,
then PEEKing these two values should provide a standard result. Try
entering PRINT PEEK 23635 and PRINT PEEK 23636 — you should
get 203 and 92 respectively. In order to find out which addresses these
represent, you need to multiply the second value by 256 — PRINT
256*PEEK 23636 will give you 23552. Now add the value in the first
location by entering PRINT 256*PEEK 23636+PEEK 23635. This
should elicit the result 23755, ie (256*92)+203.

If the Spectrum could be persuaded to give its answers in hexadecimal
(and programs are available offering this facility) the results of
PEEKing the RAMTOP system variable would have been CBh and
5Ch. We can multiply a hex number by 256 through simply adding two
zeros to the nd — 5C becomes 5000h, add CBh, and we have 5CCBh.
Guess the decimal version of 5CCBh! Merely by reading the two hex
bytes in reverse, we arrive at the true two-byte value stored in
RAMTOP. Admittedly, using hex numbers on a machine that cannot
understand them is nonsense, but with the use of an appropriate
`monitor' program, many tortuous calculations can be avoided. If you
would like proof that 23755 is indeed the starting point of the BASIC
program, then try the following procedure.

Enter a single line of BASIC into an otherwise vacant computer —
perhaps, 100 REM The first and only line — and then POKE the first
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two bytes of the program area with zeros, ie POKE 23755,0 and POKE
23756,0. Now list the program, and see the disruption caused. This is
because each line is stored with the first two bytes, which represent the
line number. If you POKE in other values, you will discover that, to add
to potential confusion, these line numbers are stored the 'correct' way
round — that is, the most significant byte first.

Returning to the memory map, let us examine what lies between the
end of the system variables and the start of any BASIC program. There
is an area of RAM designated as microdrive maps — without a
microdrive this is non-existent. Finally, before we reach the BASIC
program area, there is a small table of data known as the 'channel
information'. The Spectrum uses a method of inputting and outputting
data that assigns a channel number to each of its available types of
communication. The device which is currently the active 'stream', is the
one that receives and sends data. For example, if the screen is the active
stream, then the data stored for that output channel in the channel
information table is used by an all-purpose output routine to discover
the whereabouts of the routines that deal with screen output. If you
were to open the printer stream, the PRINT command would instigate
the sending of what would normally go to the display files for
transmission to the TV, to go instead to the printer buffer.

This may seem an unnecessarily complicated way of working, but it
comes into its own when extra channels are added to the system. The
bulk of the I/O (input and output) routines already exist and, by looking
up the information for the current stream, they can be diverted as
required to deal with each special case. The table is built up during the
initialisation process of the system, by checking which channels are
present (including peripherals) and making entries accordingly. Try the
following program, which outputs to a stream other than the normal
part of the screen. The # symbol, representing `stream', is an extended
and symbol-shifted version of the 3 key.

10 PRINT # l; "Usually this would be at the top"
20 IF INKEY$="" THEN GOTO 20

The program illustrates what happens if you output data when stream
one is selected — this is the lower part of the screen normally reserved
for INPUT prompts and error messages. If you try other numbers, you
will normally get an error message, as there is no information for the
output routine to find in the table regarding other streams.
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BASIC and variables

We have now reached that part of the memory map which holds any
BASIC program. The size of this area and the one immediately above,
the variable area, will depend on the size of program loaded, and the
number of variables it uses. Each time you enter a line of BASIC, the
memory contents above the point where it is stored are shifted up to
make room, and the relevant pointers that are held as system variables
are altered accordingly. The next space is for editing lines of a program.
When you select them, they are moved here and a copy sent to the lower
part of the screen. As you move the cursor, you can make an y changes,
until ENTER is pressed. Then the line with the matching number is
found, deleted, and replaced by the new, corrected line from the edit
buffer. This is also where completely new lines are created as you type
them, but before you press ENTER.

Next up the map are spaces that can be expanded to hold temporary
data, such as numbers entered in response to an INPUT prompt, or
strings that are being manipiulated. Before we reach the spare space,
there is a type of stack. This is one used by the system software for
handling numbers. As I mentioned earlier, the Spectrum employs a
method to represent numbers that requires five bytes to store them: this
allows it to manipulate values both small and large to a reasonable
degree of accuracy. When handling these numbers, the computer uses
the calculator stack.

Free memory

The starting point of the free memory area (spare space) rises and falls
as the blocks below expand and contract during program entry, editing
and running time. At the top of the free space are two more stacks, the
machine stack and the GOSUB stack. The CPU uses the first of these.
with the SP register pointing to the location which is currently the `top'
of the stack. In fact the stack 'grows' from the top down — early values
passed to the stack will be stored high in memory and, as more data is
pushed, the SP will point to lower addresses. The second stack is used
by the BASIC interpreter to store RETURN, line and statement values
which are used as GOSUB returns. The last value stored is 3EOOh,
representing an illicit line number, so the BASIC knows that you have
tried to RETURN without GOSUB. Finally, at the very top of the
memory is a block of bytes — FF58h or FFFFh on the 48K Spectrum,
7F58h to 7FFFh on its smaller sibling. This holds the user-definable
graphic dot patterns which are at first filled with the shapes of their
corresponding letters, but defining your own shapes will change their
contents.
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It is worth noting that, at switch-on, none of the RAM addresses hold
anything relevant, so any data must be written in during system
initialisation. This task and many others are performed in the time
between the appearance of the blank screen at the moment of switching
on, and the printing of the copyright message: not long in human terms.
but for a computer plenty of time for a great deal to be accomplished.
We have come to the end of our guided tour of the memory map. Much
of the above will be expanded upon soon, but now it is time to look at
how the computer achieves its communication with the outside world.

CHAPTER 9
The Keyboard

A computer can be of little use unless it has some means of receiving
information. When a Sinclair Spectrum computer first emerges from its
packaging, there are two ways of feeding information to it. by cassette
or by keyboard. You can load the memory with data from a cassette
player. but the programs would almost certainly need some other data
which would come from the keyboard. Even when the screen flashes
with the familiar message. 'Press any key to begin', it is expecting data,
in its most simple form, from a key.

The way keyboards actually feed information into a microcomputer
varies with each machine. Some microcomputers can interrupt whatever
the CPU is doing, and call attention to themselves whenever they have
something to pass on: what then happens depends on the software that
has been built into the machine.

The Spectrum uses a slightly different approach. The keyboard itself
is a completely passive device, but the operating system scans it at very
short, regular intervals to ascertain whether any key is being pressed. If
it is, the operating system stores the value in a particular memory
location, which the system's software can read and respond to as
required. In order to understand how these regular intervals occur, we
shall first need to look at some of the functions of the Z80 processor
which I have so far failed to mention.

Using the keyboard from machine code
The two pins that concern us are called NMI and INT. They empower a
microcomputer designer to achieve a machine which, although it is still
able to do only one thing at a time, can nevertheless share that time
between different tasks. For example, some printers, such as the old
teletype terminals which you may have seen (and heard!), are very slow:
when they are sent a character to print there is a considerable delay, in
computer terms, before the next one can be sent. Instead of having your
microcomputer standing idle during this time, you can employ it
elsewhere, whilst the printer can let it know that it is ready for another
character by putting a signal on the INT pin.
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So what's all this nonsense about ancient printers and impatient Z80s?
While the interrupt system is available, it can be used to make your
Spectrum appear schizophrenic. Every fiftieth of a second, the ULA
chip sends out a video signal, starting with a 'frame pulse' with which the
TV or monitor synchronises. In the process of generating video, the
ULA creates a pulse of zero volts which it sends to the CPU's INT pin
every fiftieth of a second. The Spectrum's software has configured the
Z80 to respond to this signal in the simplest manner available. When the
Z80 has finished performing each instruction, it checks its interrupt
input; if it senses a negative pulse, it saves the contents of the program
counter (on the stack), and loads it with 0038h (56 decimal).

We have now directed the processor from whatever it was doing and
pointed it towards the machine code routine stored at 0038h in the
ROM. This routine does three things. Firstly, it increments the system
variable called 'frames' — this is a three-byte value held in RAM
locations 5C78h to 5C7Ah, which is used to measure time through the
BASIC command PAUSE. Secondly, the routine scans the keyboard to
see whether any key is depressed. If this is the case, it decodes the key,
taking into account shift keys, and unless two or more keys are pressed
it stores the code in RAM location 5C58h. Finally, the old value of the
program counter is retrieved from the stack and reloaded: thus the Z80
returns to exactly where it left off before the interrupt occurred.

The program ensures that the CPU registers are not changed. Any
that are used have their previous values stored and then reinstated once
the interrupt has finished, in order that the program that has been
interrupted is not at all affected. The operating system can take action
on the keypress if it wishes — it may be in command mode and react by
interpreting the key as an instruction, or it may be running a program
and therefore ignore the key completely.

When you can follow machine code, the main scanning routine will be
of interest. It can handle 'rollover', which is easier to demonstrate than
to explain. Switch on your machine and clear the copyright message by
pressing PRINT. Now hold down the `p' key, which will auto-repeat and
print a stream of `p's to the screen. Now press another key as well — the
repeat printing stops because the machine does not know which key you
wish it to send to the screen. Lift your finger off the `p' key and the
second letter will appear. The automatic repeating is also handled by the
scanning routine.

Now to explain how the keys are connected. There are 40 keys, each
with their own switch. These form a matrix connecting the eight high
address lines with five lines numbered KBD 9 to KBD 13. Circuits
within the ULA sense when the Z80 is performing an IN (FEh)
operation, and respond by placing the voltages from the KBD lines on
to the low five bits of the data bus. A study of Figure 9.1 will show you
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Figure 9.2
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how this is achieved: remember that, although you can build the circuit
out of discrete components. the Spectrum contains them as part of its
ULA. Figure 9.1 is a good example of port decoding. When IORQ and
RD are both low, then the Z80 is trying to read the port whose address
is held on the eight low bits of the address bus. The function of this
circuit is that, when the CPU executes IN (FEh), the five low data lines
are fed from the keyboard lines.

In Figure 9.2, follow the line marked KBD 9, and study how it can be
connected to any of the eight high address lines. It is important to note
how the line is pulled high by the voltage at the other side of the resistor
— KBD 9 is high until one of the keys is pressed, and contact is made
with the appropriate address line. Even when this happens, the data line
will only go low if the address line it has been coupled with is also low.
The diagram contains some previously unexplained symbols on the
address lines, labelled as diodes. You may remember that I earlier
described a diode as the simplest type of semiconductor device, as it has
the property of passing current in only one direction. The diodes ensure
that, if more than one key is pressed, their effect does not extend any
further back down the address lines than the diode. This prevents
keypressing from interfering with the other operations of the address
bus.

The method of placing different levels on the high address lines
depends upon the behaviour of the Z80 when performing IN
instructions. There are two ways of reading in data from a port. One of
these takes the form IN A,(N), where N is the number of the port that is
required to supply data to the accumulator register. This eight-bit
number is placed on the eight low address lines, and the previous
content of the accumulator placed on the eight high lines. When the
data is read in, if you load the accumulator with, for instance. 7Fh (127
dec), which has the binary form 01111111. and then give the instruction
IN A (FEh), bit 0 of the result read into the accumulator will be high —
unless the space key is pressed, in which case it will be low. So you can
see from this simple example how you can test for individual keys. The
other Z80 IN instruction takes the form IN A (C), and it allows you to
load the C register with the number of the desired port. Even more
usefully, the value of the B register is placed on the eight high lines, so
that the accumulator does not need to be continuall y reloaded.

Scanning the keyboard
Refer again to Figure 9.2. It shows the layout of the keys, and how they
are connected to the address and port lines. Program 9.1 provides a
simple illustration of keyboard scanning which checks whether keys are
pressed on either side of the computer. It is in machine code because
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this allows the easy manipulation of the individual bits passed between
the keyboard and the CPU. Although the Spectrum possesses OUT and

IN as part of its BASIC. testin g individual bits can be slow and awkward

as their arguments are in decimal. You could modify Program 9.1 to test

for any half line of keys, or even certain keys within a row, by masking
off more than the three high bits read into the A register — ANDing it
with, say, 10h, will test the first key of each row only. The program will
be of interest to potential games writers; it can be used in a BASIC
program. or the code merged into one of machine code. Incidentally,
the three high bits that are read in along with the five keyboard bits

Table 9.1: Machine Code for Keyboard Scanning

Address
	

Hex Code	 Assembler

RAMTOP+1 010000	 LD BC,0000h

3EFO	 LD A,FOh
DBFE	 IN A,(FEh)
2F	 CPL
E61F	 AND 1Fh

2802	 JR Z,+2
CBC1	 SET 0,C
3E0F	 LD A,OFh

DBFE	 IN A,(FEh)
2F	 CPL
E61F	 AND 1Fh

C8	 RET Z
CBC9	 SET I,C

C9	 RET

should always be masked off. On early models of the Spectrum. they
always returned zeros, and many professional programs simply ignored
them. When the second and third issue machines appeared, much
embarrassment ensued, as these bits took on a random nature causing
spaceships, monsters and the like to roam about on their own accord!

Program 9.1: Keyboard Scanning
10 REM	 Keyboard scanning

11 REM	 function
12 REM
20 REM	 Lower RAMTOF'
21 REM
7.0 RESTORE	 LET	 ( F'EE!:: 177.0+256* P

EEL 23731)-26 g CLEAR ..
40 REM

80

41 REM	 Poke Machine code
42 REM	 into memory
43 REM
5t LET x = t PEEK 23710+2 6* PEEK 21. 3 1:!

+1
60 FOR y=x TO .:+24: READ z; POKE	 _

NEXT y
70 REM
71 REM	 Print USR address
72 REM
80 PRINT AT 1,2; "The routine is cal.le

d b y the"; TAB 7; "function USR ";x
90 REM
91 REM	 Example
92 REM
100 PRINT AT 8, 10; "Frese an y keys"
110 PRINT AT 12, 14; : LET a= USR
120 IF a=0 THEN PRINT "NONE "
1:10 IF a=1 THEN PRINT "LEFT "
140 IF a==2 THEN PRINT "RIGHT"
:150 IF a	 THEN F'RINT "BOTH "
ibc;? PRINT AT Ib, .W l "USR	 = "; •_t

170 0 GO TO 110
18c t REM
181 REM	 Machine code data
182. REM
190 DATA
200 DATA
210 DATA

201

What if you want to use the built-in scanning routine for your own
purposes? Remember that it is interrupt driven — the maskable
interrupt can be disabled, in machine code, with the aid of the DI
instruction, which causes the CPU to ignore its MI pin. There are a
number of ways to elicit a value from the keyboard, the choice of
method depending on the kind of program you are writing.

If you leave the interrupts enabled this may upset any critical timing
involved, but if you do decide to leave them enabled, then proceed as
follows. Test bit 5 of flags, the system variable stored at 5C3Bh (23611
dec): if it is set, then a key has been pressed since the last time that flag
was reset. You will find the ASCII code for that key in the system
variable location, LAST K. 5C08h. If you are only interested in the caps
shift value, it is stored in location 5C04h (23556 dec), and it is updated
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every interrupt, so you will not need to test flags. On the subject of
CAPS SHIFT, you can set caps lock from within a BASIC or machine
code program, by setting bit 3 of FLAGS 2 (5C69h). To see this happen,
enter POKE 23658,8:INPUT A$.

It is possible that an interrupt will occur between testing flags and
fetching the value, which may produce the occasional spurious result. In
a machine code routine this can be circumvented in two ways. You can
ensure that the CPU marks time with the HALT instruction — it will
perform NOP until it receives an interrupt. By inserting a HALT in the
code immediately prior to reading the system variables, you gain a
breathing space of one fiftieth of a second before the next interrupt.

If you do leave the interrupts enabled but wish to protect your routine
from the possible tamperings of machine code buffs, make sure that you
set interrupt mode 1 at the start of your program. The alternative
method is to disable the interrupts altogether and call the scanning
routine yourself. As it is located at 38h, the RST 38 op code will do the
job in one byte. The system variable will be set accordingly, and the A
register will hold the value from LAST K. The scanning routine contains
an EI instruction, so you need to use DI again.

It is worth nothing that there is another keyboard scanning routine
contained in the ROM. which tests the keyboard to see if BREAK is
pressed. When it runs a BASIC program. or performs some commands,
such as save or load, the Spectrum makes frequent calls to this routine in
order to allow the user to stop the machine and return to the command
mode. If you want to use the BREAK testing routine it can be found at
1F54h: it returns the CARRY flag reset to zero if both BREAK and
CAPS SHIFT are pressed. This subroutine is quite short — you may
wish to copy it for your own purposes, and perhaps modify it to respond
to other keys.

The keyboard is not only capable of producing ASCII codes. Each
key can also generate the BASIC tokens that represent commands and
functions. This is dependent upon what mode the keyboard is in, as
shown by the cursor — when it is a flashing K, then the next keypress is
translated by the operating system as a command. Pressing 'p' in the
command mode generates the value F5h: it only appears on the screen
as PRINT because the output routine recognises it as a special case, and
it looks up in a table (stored in the ROM from 95h to 204h) what string
of characters to send to the screen or, for that matter, what is the
currently selected output stream. So the Spectrum saves space and time
— it does not need to store five bytes when it represents PRINT, and
need only decipher one byte for each command or function. And we
need never concern ourselves with the spelling of words such as
RANDOMIZE!

The keyboard of the Spectrum is a fairly simple device to scan, and
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the operating system does so thoroughly, but if you are writing in
machine code you may wish to work out your own scanning routine. A
table in the ROM (205h to 22Bh) will help you in decoding the values
returned from the scan as this holds the ASCII codes in the order in
which the keyboard is laid out. If you are an excellent typist who has
fitted a real keyboard to your Spectrum, you may be able to `beat the
scan': how about a routine that can store, say. the last sixteen
keypresses? No, I haven't written one — but then I'm a slow typist!

• •
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CHAPTER 10
Pictures on the Screen

If a certain Scottish electronics' pioneer had got his way, the television
set sitting in the corner of your room would contain a disc with lenses
around its edge, spinning at great speed. Fortunately for the video
industry, history has left us with a much better system. Both Baird's
spinning discs and today's electronic replacement have the same
principles of scanning at their roots: the only disadvantage of the
modern method is that it is harder to understand.

How television pictures are displayed
The tube which displays the picture we see on the television set is called a
`cathode ray tube'. It is represented in cross section by Figure 10.1. The

Focus & Scan
Coils

Electron

Cathode

Figure 10.1
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air is evacuated from inside the tube and the front face coated with small
particles called 'phosphors'. At the back of the tube is an `electron gun'.
Here a piece of metal called a cathode is heated up. and a high enough
voltage is generated between it and the phosphors to cause the electrons
at the cathode, already excited by the heat, to travel to the highly
attractive positive voltage area that exists at the phosphors. As there is
nothing to impede their path, a stream of electrons will flow through the
vacuum to their goal.

A magnetic field, and other voltages, can have a marked influence on
the path taken by these electrons, so it is possible to use
electro-magnetic coils, and extra cathodes and 'anodes' (the positive
version of cathodes), in order to deflect and focus the `beam' of
electrons travelling to the phosphors. This beam can be made to arrive
at any particular spot on the screen. The special properties of the
phosphors are significant. If bombarded with lots of electrons. a
phosphor will give a glow of light. Within certain limits, the more
electrons the greater the glow given off — very useful indeed.

So we have a method of lighting up any particular point on the TV
screen with the application of suitable control voltages to the various
components of the cathode ray tube. It is now a relatively small step to
perceive how we might 'paint' a picture by aiming the beam at various
parts of the screen and making them glow, moving on to others and
returning before the original glow has subsided. Figure 10.2 shows how
this is done — the screen area is divided up into horizontal lines and a
line is scanned. The intensity of the beam varies, resulting in the
different brightnesses required. The beam is then reduced in intensity as
it 'flies back' to the start of the next line and the process is repeated.
When the bottom of the screen has been reached, the beam returns to
the top and begins again, but this time it fills in the spaces between the
first set of lines. This whole process occurs very quickly, and only a
twenty-fifth of a second elapses before the beam returns to the first
phosphor it scanned.

In order to make an intelligible picture out of the screen display, its
associated circuits must be sent a number of pieces of information.
These are pulses which instigate the scanning of a new line or a new
frame, and control the brightness generated. The data is contained in an
analogue signal called the 'video' signal, which employs negative-going
pulses to govern the line and frame circuits, whilst the brightness
information is managed by a varying positive voltage coming after the
line synchronising pulses. Figure 10.3 is a graph of one line of video
signal. The signals received over the airwaves or from the TV socket of
the computer are video signals that have been modulated in the same
way as radio signals, so that they can be transmitted and then decoded
by the 'tuner' circuits in the television set.

Tube Face
Figure 10.2

As for colour, it makes matters even more complex. Any colour can
be made up from a mixture of three very pure sources of 'primary
colour' — red, green and blue. A colour television has three kinds of
phosphors coated on the screen. The tube contains not one but three
electron guns, and masking between the cathodes and the screen
ensures that the beam from one gun only lands on one colour of
phosphor. The size of the different colour areas is so small that from a
distance they merge into one source of light to the human eye. With all
three guns set to maximum, the screen will still glow white, but if the
relationship of the output of the guns is varied different colours are
displayed. Special colour monitors only require the three colour signals
to be sent separately and they will achieve a very high quality of display.

Normal televisions expect the colour information to be included with
the video signal in what is known as a `coded composite video' signal, as
this is is how the broadcasting system transmits colour. It means that the
channel does not take up any more airspace and monochrome receivers
can share the same signal. The system used to code the colour
information is complex: suffice it to say that colour 'difference' signals
are modulated and mixed with the video in much the same way that
more than one TV channel can transmit on the airwaves, and a tuner
circuit can distinguish between them.

The above sparse description should at least familiarise you with some
of the terms associated with video, and give you a clear idea of the way a
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television set draws its pictures, by scanning across the screen at a very
fast rate. Let's now return to your Spectrum and see how it goes about
generating the video signal, via its modulator, to feed a television set.

Volts

Time --j

Figure 10.3

The Spectrum video signal
I mentioned earlier that much of the contents of the ULA are concerned
with the screen display — the data for the generation of that display is
stored in two files in the area 4000h to 5AFFh. Output from the custom
chip includes the `sync' pulses, and the analogue colour and video levels.
Timing for the pulses is provided by dividing down the clock frequency.
The CPU can signal to the ULA information that controls some of the
aspects of how the video is generated. By writing to the three low bits of
port FEh, the colour used for the border can be changed — the value
corresponds to the colour numbers used by BASIC: 0 is black, 1 is blue,
and so on up to 7, which is the equivalent of white. This exemplifies the
colour mixing — the three bits each control a primary colour. so if we
mix red and green by sending 110 binary to the port, the colour
displayed for the border is yellow, the same result as a mixture of red
and green light.

When the Spectrum is producing pictures, what is going on in the
ULA? Completely independent of the processor, it produces a frame
pulse to commence the picture at the top of the television screen, and
then it sends out line pulses at the right intervals. For the analogue video
information, it uses the border bits as the data to generate the
corresponding colour and brightness levels, for insertion between the
line pulses of the composite video. After sending out a number of lines
containing the border, the ULA starts the first line of the screen proper.
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A line synchronising pulse is followed by a bit of border, and then the
action starts. Switching over control of the low 16K of RAM address
lines to itself via the multiplexing circuit mentioned, the ULA reads in
the first byte stored in the display file, and also the first byte in the
attributes file. Then it returns control of the RAM to the CPU. A
problem that could arise here is the CPU also try ing to read or write to
the same block of memory when it cannot control the address lines: it is
impossible for it to fetch any meaningful data if it attempts to read from
that block simultaneously with the ULA. To prevent this, the address
bus is monitored by the ULA and, if it senses that a clash is about to
occur, it simply freezes the CPU by stopping the clock pulse which it is
sending, until it has relinquished control of the address lines.

•The information relating-to the first eight pixels of the screen is now in
the ULA chip, each bit of the byte from the display file representing 1
for ink or 0 for paper. The attributes file controls the colour information
as follows — bits 0, 1 and 2 determine the colour of the ink pixels, and
bits 3, 4 and 5 the paper. If bit 6 is set, this signifies BRIGHT and the
whole of the eight pixels are 'sat up'; that is, the luminance of both
colours is increased. Bit 7 is the flash control: if set to 0 then the pixels
are unaffected; if 1, then the output of a low frequency oscillator circuit
in the ULA determines if the paper and ink values are to be swopped
over before coding.

The first eight pixels have been conveyed to the screen, and the
process is repeated another 31 times until the entire top row has been
sent. Then the border colour is reinstated for the remainder of the line.
The ULA proceeds to reiterate this process for the rest of the screen.
However, the next line of pixels is not stored immediately after the first.
I will show how the memory map of the screen is arranged in a moment.
Each line continues to be fetched and transmitted until the bottom of
the screen is reached, when more lines of border are produced, until it is
time for the next frame pulse, and off we go again. So the ULA happily
transfers the contents of the display files to the outside world. A chip
(LM 899) helps code the colour information before the signal is sent to
the modulator. From there a broadcasting lookalike is sent to the
television set. When its access to memory in the region 4000h to 7FFFh
would upset the work of the CPU. then it stops the supply of clock
pulses until the danger is over.

Now to move on to the actual arrangement of the display files. At first
glance, the method used seems remarkably convoluted. However, it is
important that the ULA should be able to scan this area with the
minimum of decoding work. It is, therefore, understandable that the
pattern used makes more sense when we study the addresses in binary.

The screen is divided into three sections. each of which use 2K of
memory to store the pixel data. These sections occupy 4000h to 47FFh
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for the top of the screen, 4800 to 4FFFh for the middle, and 5000h to
57FFh for the bottom. Each section contains eight rows of characters.
The top line of the first of these rows of characters is held by the first 32
bytes of each section. The next seven blocks of 32 bytes each hold the
same data for the remaining seven text rows of the section.
Subsequently, the lines of pixels for the rows of characters are stored in
the same manner — that is, all the second lines, then all the third lines,
and so on, for the eight lines of pixels that make up a row of character
spaces.

This is complicated to describe in words and so it is best illustrated by
a simple program. Enter Program 10.1 and run it. It will ask for two
values to use for its demonstration. I suggest that you try 255 as the first
one, and any eight-bit number for the second. It will then fill the entire
display file sequentially with the first byte, and the three sections of the
screen will in turn be filled with ink dots. Notice the 'venetian blind'
effect as the character rows are gradually built up.

When the screen is full, something slightly more dramatic will occur
— the program pokes the second value into the attributes file which sits
immediately above D-file 1. This is effected much more quickly due to
the smaller size of the file. I have said that things can sometimes be
easier in binary, and here is a good example of this. If we write a 16-bit
number to represent the screen locations, and use symbols to denote
which bits tally with which parameters, it looks like this:

OlOSSLLLRRRBBBBB

The letters represent the following. S is the section number with 0 at the
top and 2 (10 binary) at the botom. L is the number of the line of pixels
within the row of characters (a three-bit number can stand for one of
eight lines). R is the row number, and B indicates the position of the
byte in the row, the number of the column. The address splits neatly
into two bytes: you can increment the high byte in order to locate the
subsequent seven lines of pixels for each character space.

Program 10.1: Screen Layout
10 FtLP'I	 Screen 1 ayou.t
1 1 RErI	 examination     
12 REM
20 REM	 Set up
21 REM M
30 INK 0'4 PAPER	 BORDER 7 FLASH i ^

BRIGHT ^?r (::LE
40 REM M
41 REM	 Get values

42 REM
50 INPUT "Enter byte (0::255) "äb"yte
60 IF byt.r_t::i? OR bvt._;>7.'=,'C.n; THEN	 GO TO 5

ri

70 INPUT "Enter c:oI.or (0::>25:5) ' .::olor-
80 IF c 1 or i7 OF: color—>255color>255 THEN GO TO

90 REM

	

'' 91 FtEN(	 Alter ter :3 c.r-een
•'2 REM

	100 FOR';, 	 x=16384 TO 22527 POKE	 byt _ „
NEXT

110 0 REM

	

111 REM	 Alter Colours
112 REM
,  

	 ..	 28	 ,.,.:.. ,	 ,	 I.!.,::.t1	 FOR	 .....^..^...!,_c.,	 ^ I_I	 r-r._^ ;	 ='t`1'E	 ;,color,
i"IE.XT :<
130 REM

	

'i.::.;:I. REM	 Display _ • Values
132 REM
140 PRINT AT 2,4; "Byte ="byte AT Cu

	1 	Color-'	 = ";color ° r;I 10,4; "Press ... key
to alt =r"
:1.50 REM

	

151 REM	 Wait .for 'r::.-. y pr.- -
152 REM
160 IF	 :l h•Il(E:'1. -; ' THEN	 (31) TO 160
170 CEO TO 10

The Spectrum uses a quite straightforward method of printing
characters on the screen. It has stored in ROM a table of shapes which,
when POKEd to the screen, will form the letters. We saw earlier that
the routine for printing to the screen can be called at 10h, and that this
jack-of-all-trades routine also handles other channels, assuming that the
correct one is selected. It has several other assets — it can move the
print position when the screen is selected; it prompts you with the query
'SCROLL?' if there is no room left to print in: it sets the colours; it
handles the special printing modes such as OVER; and it will even
expand the BASIC tokens when you send them to be PRINTed.

However, at the heart of the routine exists code which looks up the
current printing position. The code uses the ASCII character code
which was passed to it in the A register when the routine was called, to
find the corresponding dot pattern in the ROM. It copies the first byte of
that pattern on to the screen, increments its pointer to the ROM table,
and also increments the high byte of the register that holds the screen
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address, so that it points to the next line of pixels down the screen. The
next byte of dot pattern is then copied into D-file and the process
repeated until all eight bytes are in the correct parts of screen memory.

Now that the shape is in the display file, it will automatically be sent to
the screen by the ULA. The output routine also sets the attributes' byte
for the character space to whatever the current colours are, and updates
the print position. This is then stored in two ways — as line and column
numbers as used by the PRINT AT command, and as an absolute
address for the first byte of the character space. So the 'real' screen
address need be calculated less frequently than it would be if only the
coordinates were stored.

Another system variable that is used b y this routine is CHARS, which
holds an address which is 256 less than the beginning of the character
shape table. For most characters you need only multiply their ASCII
code by eight and add it to CHARS. This enables you to find the address
of the block of eight bytes which holds the shape of a particular
character. The normal value of CHARS is 3000h as the table is located
from 3DOOh to 3FFFh in the main ROM, but as CHARS is held in RAM
you can make the operating system use your own character set which is
located elsewhere. If you want to create confusion, try POKE 23606,8:
for further nonsense, POKE 23607,0.

Much the same method is used to store another source of shapes, the
user-definable graphics, which are kept at the top of the memory. When
it is asked to print a graphic character, the output routine fetches the
address of the table from UDGs and obtains the shape from there.
Before any new shapes have been defined, the RAM holds a copy of
part of the ROM table, so we obtain normal capital letters. In addition,
there is a set of 'predefined graphics', in the form of quarter-character-
sized blocks, which are obtained by calculation. If you were to study
their shapes in conjunction with their character codes, translated into
binary, you would probably guess how this is done. (See your Manual
for the codes.) The four quarters can be seen as the bits of a four-bit
binary number, with the prefix of 1000 binary. The shape is therefore
'made up' by a clever piece of machine code.

Manipulating the screen from machine code
In order to manipulate the screen from machine code, you can use one
of two approaches. You can either write your own purpose-designed
printing routines, which is not as difficult as it sounds, or use the
Spectrum's own software. If you are writing a program that does not
require outstandingly fast and smooth graphics, then the available ROM
routines are more than adequate. You can send all the BASIC control
codes to the output routine and even print to the bottom two lines of the
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screen if you change the value of DF SZ, which holds the number of
lines reserved for error messages. (Don't neglect to restore it before
returning to BASIC or there will not be anywhere for the computer to
print OK!) For those of you intent on bettering the 'Buck Rogers and
the Planet of Zoom' arcade game with your own routines, then good
luck! — and here are two small tips.

The first relates to the border. Many commercial programs for the
Spectrum are marred by black flashes in the border every time the
colour is changed. yet preventing this is simple. Before changing the'
three low bits of port FEh to the new colour, use a HALT command so
that the CPU waits for an interrupt before continuing. When it
recommences, this will coincide with a frame pulse, so the change of
border colour will not occur during active picture time.

The second tip is Program 10.2, a machine code listing which
calculates screen addresses. I have only provided the op codes and not a
BASIC program to load it, because it will need to be incorporated into a
machine code program as a subroutine. It can be located anywhere in
free memory. To use it, load the E register with the horizontal column
number as in the AT command, and load the D register with the screen
pixel number, which starts at the top with line zero and ends on 192 dec.
Then call the routine. When it returns, the HL register will contain the
address of the required byte in the display file, and the BC register will
hold the corresponding byte of the attributes file. You may wish to
shorten the program to deal only with the first byte of each character;
and there is no need to use the same registers either, if these changes
suit your purposes.

I have kept the program simple so as to demonstrate the method more
effectively: you should find the principle useful.

Program 10.2: Machine code routine to calculate screen addresses
Address	 Hex code	 Assembler

PUSH AF
LD A,D
AND F8h
RRCA
RRCA
RRCA
LD L,A
AND 18h
OR 40h
LD H,A
LD A,D
AND 07h
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SCALC F5
7A
E6F8
OF
OF
OF
6F
E618
F640
67
7A
E607
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84
67
E607
OF
OF
OF
83
6F
7A
E6C0
07
07
F658
47
4D
Fl
C9

ADD A,H
LD A,L
AND 07h
RRCA
RRCA
RRCA
ADD A.E
LD L,A
LD A,D
AND COh
RLCA
RLCA
OR 58h
LD B,A
LD C,L
POP AF
RET

• •
CHAPTER 11
Sound

`If only it could talk', you mutter as you stare, grasping for
comprehension. at an error report at the bottom of the screen. In fact
you may already have heard a talking Spectrum, as they can be
persuaded to speak, albeit somewhat crudely, by software. The
hardware for making sound consists of a simple BEEP facility, the
clicking that occurs when the keyboard is in use comes from these beep
circuits, and the signals sent to the MIC sockets are from the same
source.
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On entry	 D holds the pixel line number
E holds the column number

Routine returns HL holding the display file address
BC holding the attributes file address

Writing high quality graphics routines is no mean task. but you are
starting off with some pretty good raw materials. You will be pleasantly
surprised by some of the effects that can be achieved with just a small
dose of machine code, particularly if applied to the attributes file.

How the beep port works
The simple beep circuit is contained mainly in the ULA. The gates
responsible for decoding the CPU's attempt to write to or read from
port FEh, connect to a pin of the ULA which has some external
components attached. If a write operation to port FEh sets bit 4, then a
high enough voltage comes out of the ULA pin to activate the small
built-in speaker. If bit 3 is set, then the voltage generated will be
insufficient to drive the speaker, but it will still be present at the MIC
socket for recording on cassette. The sharp-edged square wave that
occurs when a voltage is switched between high and low, is somewhat
modified by the use of a capacitor which rounds off the edges.

The same ULA pin is also connected to the EAR socket — by reading
bit 6 of port FEh, either a digital 1 or a 0 is returned, depending on the
incoming voltage. Inside the ULA, a special kind of gate called a
Schmitt trigger is used to approximate the signal into a 1 or 0. If you
slowly raise the voltage on the input of this gate, its output will remain
low until the input is around 2.5 volts, when it `triggers' and the output
goes high.

The Spectrum's system software creates a beep in the following
manner. Bit 4 of port FEh is set, and a looping routine makes the CPU
wait for a length of time which relates to the frequency of the beep
required. When this time has elapsed, bit 4 of the port is reset, and the
loop delay is repeated. One cycle of sound has now been sent to . the
speaker and the whole process recurs until cycles sufficient to achieve
the required sound duration have been generated.
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There are two points to note about his routine. If we double the
frequency, that is, the number of cycles per second, by halving the delay
period, then the duration of the beep will halve, unless we double the
number of cycles that are generated. The beep routine calculates how
many cycles of any particular frequency are needed, in order to make
the sound last for the required duration. In doing this. it makes
extensive use of the floating point number routines. The other factor is
the three low bits of port FEh which control the border colour — if you
write to the port indiscriminately, without setting the bits to the right
value, then the border will change. The beep routine looks up the
current border colour in a system variable called BORDCR: bits 3, 4
and 5 indicate which colour is active. These bits are moved to the low
three of the accumulator. so that the border remains constant when an
OUT (FE),A instruction is executed.

Table 11.1: Machine Code for Sound Effect

Hex Code	 Assembler

3A485C	 LD A,(5C48h)
1F	 RRA
1F	 RRA
IF	 RRA
E607	 AND 07h
OEFF	 LD C,FFh
2600	 LD H,00h
44	 LD B,H
CBE7	 SET 4,A
D3FE	 OUT (FEh),A
10FE	 DJNZ —2
44	 LD B,H
CB A7	 RES 4,A
D3FE	 OUT (FEh),A
10FE	 DJNZ —2
CBE7	 SET 4,A
D3FE	 OUT (FEh),A
10FE	 DJNZ —2
CBA7	 RES 4,A
D3FE	 OUT (FEh),A
10FE	 DJNZ —2
24	 INC H
OD	 DEC C
20E2	 JR NZ,-30
C9	 RET

Chapter II Sound

Using the beep port from machine code

Using the beep port from machine code threatens all the above pitfalls
for the user, with one extra thrown in for good measure, but a valuable
advantage is the speed with which the parameters can be changed. So,
for example, alternate cycles of different duration can be produced, or
the shape of the cycles altered, with the low part lasting for less time
than the high part. The extra pitfall I mentioned is caused by the video
generating circuits that will stop the CPU when both it and the ULA are
trying to use the low 16K of RAM. Any machine code that is located
here will run in a 'lumpy' manner, as it gets interrupted quite often.
Although it is still wise to turn off the interrupts, as the ROM routine
does, these cause much less `warbling' than does the constant halting of
the program. if it is in the low 16K of RAM. If you want to create pure
tones with the beep port, then you must stick with the ROM code,
readily available at 3B5h in the ROM, or use the expanded machine.

An example of what can be attained in a few bytes is given in Program
11.1. The BASIC program can simply be typed in. saved and run. The
machine code listing explains what is happening and allows you to
incorporate the effect in your programs. Note how the individual tones
blend into one another, an effect that you are unlikely to achieve using
BASIC alone.

Program 11.1: Beep Port Routine

li? REM	 Beep port routine
11 REM
20 REM	 Lower RAMTOF'
21 REM
30 RESTORE e LET = ( F'EEK 27770+25A*   F'

EEl-:. 23771)-43: CLEAR
4i i REM
41 REM	 Poke Machine code
42 REM	 into memory
43 REM

.,	 ;2
+1

50 LET = i PEEK 27730+256** PEEK. 77.' 1 )
+ 

60 FOR y=x TO x+42: READ	 POKE y,
NEXT y

7i i REM
71 REM	 Print Lis p address
72 REM
80 PRINT AT 1 9 2:"The routine is calls

d by the"; TAB 7; "function IJSR ";:<

• •

Address
RAMTOP+ 1
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90 REM
91 REM	 Example
92 REM

100 PRINT AT 12, 10; "Press any key"
110 IF INKEY$ _"" THEN GO TO 110
120 LET a= USR x
130 GO TO 110
200 REM
201 REM	 Machine code data
20' REM
^10 DATA 58, 72,92,•31, `1,31, 2_0, 7y 14,255

0 DATA 38,0,68,203,231,211,254,16,254
,68
230 DATA 203, 167, :21 1 , X54, 1 254 20 	 31

5 211,254 254
240 DATA 16,254,203,16721i,254'54,

=6,1=
250 DATA 32,226,201

Tape routines
Let's now take a brief look at the way that cassette save and load
functions are acomplished by the system software, using routines in the
ROM from 4C2h to 9F3h. If you want to devise your own routines,
perhaps to achieve a faster method of storage, then the ULA's policy of
halting the CPU means that the best place for them would be the extra
RAM area of an expanded machine.

The method of saving goes along the following lines. The file name
(and the information as to which type of file it is) is assembled in
memory as a string of bytes, to be used later as a header. Then the `start
tape' message is displayed. The machine then tests the keyboard for a
press and, when one occurs, first the header, then the data itself, is
formatted and sent to the MIC socket for recording. This format
consists of, firstly, a leader of tone with a frequency just over 800 cycles,
then one cycle of 2040 hertz. Now single bits are transmitted as a cycle
of either 2040 hertz to represent a zero, or 1020 hertz for a one.

The first eight bits come from the A register, which holds a flag that is
set if the data to follow is header information. Next, each byte to be
stored is sent, one bit at a time, as tones to the EAR socket. After each
byte, the keyboard is tested to ascertain whether BREAK is being
pressed, and the routine aborts if it is. At the end of the data, a final
byte is written to tape (the length of the block was held in the DE
register). This byte, called the parity byte, is created by XORing each
byte of data together as a checksum.
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Loading information back from tape consists of the above process in
reserve. The CPU monitors bit 6 of port FEh and, when it detects the
leader tone, it waits for the first cycle of 2040 hertz which signals the
start of data. It then reads in the bits from tape, and forms them back
into bytes. The first byte informs the CPU whether it is reading in a
header or data, and the software reacts accordingly. When a suitable
header is found, the information as to where the data is to be stored
(PROG if it is a BASIC program) and how long it is, is read from the
header information. The file name is printed to the screen and the next
data file on tape is loaded into memory.

At the end of the data, the parity byte from tape is compared with
another parity byte which the loading routine has been building up from
the incoming data. If there is a discrepancy, the routine stops with an
error report. During the time that bits are read in successfully, they are
also reflected in the behaviour of the border, which switches between
yellow and cyan as the EAR voltage alters. You may like to set up two
adjacent areas of RAM as blocks of Os and FFhs (255), and save them
with a code save. You will then see the width of the stripes double while
they roll through the border as the FFhs are transmitted.

For the musically inclined, here are a few observations. The beep
facility allows you to produce notes that relate to the musical scale —
using SOUND and machine code will necessitate the calculation of your
own values. Middle C is a frequency of 440 hertz; if you double the
frequency of a note, the resultant sound is one octave higher. The 11
semitones in between can be calculated by knowing that the frequency
of C multiplied by the 12th root of 2 will produce the frequency of C
sharp, C sharp times the 12th root of 2 gives D, and so on. The 12th root
of 2 is roughly 1.059463. Happy composing!

• •
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More Letters to the Line

The number of characters that will fit on to one line of the Spectrum's
screen display can be something of a disability. If you wish to use your
computer for more serious applications such as word processing, then 32
columns is quite inadequate — even just a few extra characters on each
line would improve the usefulness of the computer. To squeeze 42
characters on to a line is not particularly difficult if you resort to
machine code, but then how do you interface the machine code with
BASIC? The following program is designed to be incorporated into
your own BASIC application. It demonstrates some simple techniques
for screen manipulation and also provides an example of how you can
search the BASIC variables area for a particular variable.

Firstly, let's look at how to use the program. The machine code is
stored at the top of the memory. It is protected from being over-written
by the use of a CLEAR statement which lowers RAMTOP in order to
leave room. The code is 953 bytes in length. of which only 283 bytes are
the program proper. The remainder constitutes a look-up table of the
character shapes so you need not worry about entering them accurately
at first. In order to print a string to the screen, you use the statement
LET a$="Whatever you want to print" followed by RAND USR 64421
if you have a 48K machine, or RAND USR 31653 for 16K Spectrum
owners. There is no need to make sure that a$ is the last variable
declared. For example, you may use the routine as part of a FOR .. .
NEXT loop in the form:

LET a$="Small print":FOR X=0 TO 23:RAND USR 64421:NEXT X

The routine will remember its last print position in the same manner as
BASIC, and you can move the print position with an AT type of
command. To do this you embed within the string CHR$(22) followed
by CHR$(line number) and CHR$(column number). For example

LET a$=CHR$(22)+CHR$(5)+CHR$(10)+"Please wait": RAND
USR 64421

will print the message at line 5, column 10, regardless of the previous
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print position. Any other CHR$ below 32 (dec) will force the text to
start a new line. A CHR$ above 127 will cause the premature end of
printing. The routine makes no attempt to alter the attributes file - the
letters overlap the attribute boundaries.

If you have a 16K Spectrum there will not be enough room for
Program 12.1. Also. the op codes are slightly different as the routine is
not position independent - in other words, it contains absolute
addresses which must be changed if the program is to be located
elsewhere. Therefore Program 12.2 should be used, which only loads
the first section of code. When successfully loaded and saved, RUN the
program and then load the monitor, Program 6.1, or any other routine
capble of poking decimal data into memory. You must now enter the
character shape data into addresses 31928 upwards, using the data from
the 48K version (Program 12.1) from line 500 onwards. You can now
test the machine code and, when you are satisfied that the characters are
the correct shape, save the routine on tape.

The installation of the routine is much easier if you have a 48K
Spectrum. Enter Program 12.1 - the large number of data statements
may appear daunting, but, once the first section (up to line 450) is
correct, then the program will run without crashing, if you delete the
STOP statement at the end of line 30. The errors in the character table
will then be easier to trace by printing the entire character set to the
screen. When you have a correct program, save it carefully on tape. You
can now save the code separately to load back into your own programs
after the necessary CLEAR command.

Program 12.1: 48K version
5 REM	 42 COLUMN SCREEN
6 REM
7 REM	 48K VERSION
8 REM

10 CLEAR 64412: CL.S : PRINT "Checling
data; please wait.

20 RESTORE : LET total=0: FOR x=6441'
TO 64695: READ byte: LET total=total+byt
e: POKE ;':,byte: NEXT x: REM IF total

=570 TE-IE:N PRINT "Error in program dat
a. " : 810P

70 LET total=0t: FOR >:=64696 TO 65:67:
READ b y te: LET total=total.+byte: POE  x,
byte: NEXT x: REM IF total. <: 61796 THE
N PRINT "Error in character data,": STO
F'

40 CLS : LET a$="42 column screen rout
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i ne now installed	 above RAMTUF'. To sav
e to tape use:-"+ CHR$ 22+ CHR$ ._,+ LHR$

6+"SAVE '42col' CODE 64413,957"
50 RANDOMIZE USR 64421
60 LET a$= CHR`!; 0 + CHIN 0+"Ta use LET

a$= str i ng you wish to pr-i.nt "+ CHR$ 0i- "t
hen RAND USI: 64421"

70 RANDOMIZE USR 6442:1
80 LET a.$ == CHR$ 0+ CHR$ 0+"CHR'k 22+ CH

R$ 1+ CI-i R$ c will set the p r- i n t posi ti. on
to line 1 and column c; CHR$ 0	 w:i:l l fa
r =e a. n_wli.ne"

90 RANDOMIZE L.ISR 64421: STOP
?7 REM

	

98 REM	 MAIN CODE
99 REM

100 DATA 0,0,0.0,0.0,0.0
110 DATA 42,75,92,, 1':26, 71 ., 2 54, 1'<213, ;200
120 DATA 35, 2_0, 224, 254„ _.'4, .- , 6, 17
1 70 DATA :LE3,0,2`=,,,24',23E3,.254, 160 	 ^'..	 9',
1 40 DATA :1: 1.,.:203.,:126,35,40,251,17„ 5
150 DATA 0,25,24„ 223„ 254„ 96, 40, :_46
160 DATA 94,,35,8,,2:5, 120, _'S4, 65, 40
170 DATA 3,25 „ 24, 207, 34 1 ._, 4' .:51 ;25, '	 4	 I r
1 80 DATA :':'4', 161 „25 1,-1'2,:159„2°;1,84,9:':
190 DAIF, 237, Z5, 161,251, 167,237,,66,.2c.t43
200 DATA ._.:"l°;, 126,35, _'4, :l5' . 251,'254, 12r3
210 DATA 208, 254, _2, :'2, 2-7', 1. ri6, 254, .-
220 DATA rl 48,3,50, 1..`._,8, - 51 , _ 51, 1 26, ...-
230 DATA 34	

:'
, 1`59, _:'5;1,	

9
20? . ?9, -'1, 12d, r:2131

240 DATA 50, 1; 7 , 2 =514,:'06,254, -'.'^, 218
250 DATA 1.65,'2"2„ 111,."8,0,2^;: 	 ,,20:.:,; .	 _..	 ..	 _...	 --	 -^^'^0, DATA ya-;,a;',''7,"c'.U', 2 t^t ,.::^,,:,,;''7,20--
270 DATA 20,22,o, 95, 1.67„'.2'3-', F3".2, 17
280 DATA 216,25:1„ 2S, ^^'9,2.,^:1,22`^, -2^, 16:'
290	 ,L° „9`I,. _,t;, 'i'4, .--I'6.::.^t? DATA .^5 1,58, a:.°;8 ^^1,
700 DATA A 64,87,12:7,2:30,7, .15,15,15
310 DATA 95,58„157,251   , 203,63,20:3,63   C	

^•'S.L. C'-- 	 5 /320 DATA .;2t.i:m,, 6:_. :L::=:L,'^'.._,, 14„._. ,^„^.,^^„ 1 	.
:,? DATA ._.51.,..__.^yt,-', f 1,6i,._,-'l^t, 1 t?

...^ :I :.,	 DATA
 .	

_-^ r-' 	 .-,.	 ^.^ ..	 ..;,^1^...! DA ['F'^ ,.^._,, ..:^ 1. , ^^_t::', ".`,, 3:I. , ;20;3	='S, 5
750 DATA 16,'^4:7 , 1.:19, 1.21, 50, 164',._5^1,58
_,.	 ; . 	 ^....;. 	 _ ...	 , . ,.	 .: 6ca DATA 1.^.J	 "_:^ .I. 	_ i1, 7„ a 4„ i.t, . 7.

1 , l'22 1
370 DATA 1.'226, 0., 40?„ 9,71„ „ 20:3, 25, = :l

• •
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380 D^TA 203,25,5,16,247 ,71,26,16^ 830 DATA	 9^,144,144,240,144,144,0
390 DATA 176,18,19,35,26 ,166,177,1G 840 DATA	 224,144,224,144,144,224,0
^00 DAT^ 27,43,221,35,20 ,122,47,230 B50 DATA	 96,144,128,128,144,96,0
410 DAT^ 7,32,212,58,157 ,25^,1^B,6 860 DATA	 224,144,144,1^4,144,224,0
42V DATA 50,157,251,254, 250,218,224,251 870 DATA 240,12B,224,128,128,240,0
430 DATA 175,50,157,251, 58,l58,251,60 880 DATA 240,128,224,128,128,128,0
440 DHTA 254,24,202,224, 25^,50,z5G,251 890 DATA	 96,144,128,176,144,112,0
450 DATA 195,224,251 900 DATA	 144,144,240,144,144,144,0
4^7 REM 910 DATA 224,64,64,64,64,224,0
49G REM CHAR^CTER SHAPE TABLE | 920 DATA	 240,32,32,32,160,64,0
49^ REM 93V DATH144,1^0,192,192,16V,1^4,0
500
510

D^TA
DATA

0,0,0,0,0,0,V
64,64,64,64,0,64,0

'
^

94O
950

DATA	 128,128,128,128,128,224,0
DATA	 136,216,184,136,136,136,0

520 DAT^ 80,G0,V,0,0,0,0 960 DATA	 144,144,2V8,176,144,144,0
53V DATA 0,80,248,80,248,80,0 970 DATA	 96,144,144,144,144,96,0
540 DATA 32,120,160,112,40,240,32 980 DATA	 224,144,144,224,128,128,0
550 DATA 64,16^,B0,32,80,168,16 990 D^TA	 112,136,136,168,152,120,0
560 DATA 64,160,72,176,144,104,0 10OV ^AT^	 224,144,144,224,160,14^,0
570 DAT^ 64,64,0,0,0,0,0 1010 DATA	 112,128,96,16,16,224,0
5GO DATA ^4,128,12G,12B,128,64,O 1020 DHT^ 240,64,64,64,6^,64,0
590 DATA 12G,64,64,64,64,128,0 103V DATA	 1^4,144,z44,144,144,96,0
6V0 D^TA 0,168,112,248,112,248,0 1040 DATA	 136,136,136,136,B0,32,V
^10 D^TA 0,32,32,248,32,32,0 1050 DATA	 136,136,136,168,168,B0,0
62V DAT^ 0,0,0,0,0,192,64 106O DATA	 136,80,32,32,80,136,0
630 DATA O,0,0,240,0,0,0 1070 DATA	 136,136,80,32,32,32,0
^40 DATA 0,0,0,0,0,192,0 1080 DATA 240,16,32,64,12B,240,^
650 DAT^ 32,32,64,64,128,128,0 109V DATA 224,12G,12B,128,128,224,0
660 DATA 96,144,176,208,144,96,0 1100 DATA	 128,64,64,32,32,16,V
670 DATA 64,192,64,64,64,64,0 1110 DATA 224,32,32^32,32,224,0
680 DATA 96,144,16,32,64,240,0 112V DAT^ 3^"1z2,168,32,32,32,0
690 DATA 96,144,32,16,144,96,0 1130 DATA	 0"0,0,0,0,V,252
700 DATA 32,96,160,240,32,32,0 1140 DATA 9^,144,128,192,128,240,0

710 DATA 224,128,192,32,32,192,o 1150 DATA	 V,96,16,112,144,112,0

720 DATA 112,128,224,144,14^,96,0 1160 DAT^	 128,128,224,144,144,224,0

730 DATA 240,16,32,32,64,64,0 1170 DATA 0,96,128,128,128,^^,0

740 DATA 96,144,96,1^4,1^4,96,0 1120 DATA	 16,16,112,144,144,96,0
750 DATA 112,144,144,112,16,16,0 119V DATA	 0,96,144,224,128,112,0
760 DATA 0,64,0,0,64,0,0 120o DATA	 96,128,192,128,128,128,V
770 DATA 0,64,0,0,64,12B4O 1210 DATA	 0,96,144,144,112,16,224
780 DATA 0,32,64,128,64,32,0 1220 DATA	 128,128,192,1^V,1aO,16O,0
790 DATA 0,0,224,0,224,0,0 1230 DATA	 128,0,128,128,128,192,0
800 DATA 0,128,64,32,64,128,0 12^0 DATA 32,0,32,32,32,160,64
810 DATA 64,160,3^,64,0,64,0 1250 D^TA	 128,12B,160,192,160,144,0
820 DATA 112,136,8,104,168,112,0 1260 DATA	 128,128,12B,128,128,64,0 
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1270	 DATA 0,80,168,168,136,136,0 140 DATA 11,203,126,35,40,251,17,5
1280 DATA 0,160,208,144,144,144,3 150 DATA 0,25,24,223,254,96,40,246
1290 DATA 0,96,144,144,144,96,0 160 DATA 94,35,86,35,120,254,65,40
1300 DATA 0,224,144,144,224,128,126 170 DATA 3,25,24,207,34,159,123,25
1310 DATA V 96	 16V	 160,96,32,48"
1320 DATA 016^,19^,128,12B,128,0

180
190

DATA
DATA

34,161,123,42,159,123,84,93
237,75,161,123,167,237,66,208

1330 DATA 0,96,128,64,32,192°0 200 DATA 235,126,35,34,159,123,254,128
1340 DATA	 128,192,128,128,128,96,0 210 DATA 208,254,22,32,24,126,254,23
1.340	 DATA 0,144,144,144,144,240,0 220 DATA 48,3,50,158,123,35,126,35
1370 DATA 0,136,136,134,80,32,0 230 DATA 34,159,123,203,39,71,128,128
1380 DATA 0,136,136,136,160,112,0 240 DATA 50,157,123,24,206,254,32,218
1390 DATA 0,144,144,96,144,144,0 250 DATA 165,124,111,38,0,203,37,203
1400 DATA 0 144	 144	 144 112 16 224 260 DATA 20,203,37,203,20,203 ,37,203
1410 DATA 0^24V,32,14,1^G,2^0,^ 270 DATA 20,22,0,95,167,237,82,17
1420 DATA 32,64,64,128,64,64,32 280 DATA 216,123,25,229,221,225,33,163
1430 DATA 64,64,64,64,64,64,64 290 DATA 123,58,158,123,95,230,24,246
1440 DATA	 128,64,44,32,64,64,128 300 DATA 64,87,123,230,7,15,15,15
1450 DATA 80,80,0,0,0,0,0 310 DATA 95,58,157,123,203,63,203,63
1460 DATA	 112,136,168,200,168,136,112 320 DATA 203,63,131,95,14,255,58,157

330 DATA 123,230,7,71,62,3,40,10
340 DATA 55,31,203,25,31,203,25,5

Program 12.2: 16K version 350 DATA 16,247,119,121,50,164,123,58
S REM	 42 COLUMN SCREEN 360 DATA 157,123,230,7,14,0,71,221
4 REM 370 DATA 126,0,40,9,31,203,25,31
7 REM	 16K VERSION 380 DATA 203,25,5,16,247,71,26,166
8 REM 390 DATA 176,18,19,35,26,166,177,18

10 CLEAR 31644:	 CLS :	 PRINT	 "Checking 400 DATA 27,43,221,35,20,122,47,230
data;	 please wait." 410 DATA 7,32,212,58,157,123,198,6

20 RESTORE :	 LET total = 0:	 FOR x=31645 420 DATA 50,157,123,254,250,218,224,123
TO 31927:	 READ byte:	 LET total=total+byt 430 DATA 175,50,157,123,58,158,123,60
e:	 POKE x,byte:	 NEXT	 IF total	 <> 2982 440 DATA 254,24,202,224,123,50,158,123
4 THEN	 PRINT	 "Error in program data.": 450 DATA 195,224,123
STOP

30 PRINT "The program code is now loca
ted at 31645, length 283"'"When you have
loaded the"'^character data the routine
runs"'"-From 31653": STOP

97 REM
98 REM	 MAIN CODE
99 REM

100 DATA 0,0,0,0,0,0,0,0
110 DATA 42,75,92,126471,254,128,200
120 DATA 35,230,224,254,224,32r6,17
130 DATA 12,0,25,24,238,254,160,32

Now let's look at how the p	 . works. I have provided explanatory
comments with the assembler listing (at the end of this chapter) which
may prove helpful. The routine can be divided into e sections. the
last one being the character shape table mentioned above. There are
five variables used by the machine code for its own purposes: XPOS and
YPOS are single bytes that store the current column and line positions
on the screen. XPOS holds the pixel location so it may have a value up
to 248 (the characters have a width of six pixels each). YPOS holds a
line number in the range 0 to 23: DATA. LENTH and BUFFR are all
two bytes in size. Please forgive my spelling of LENTH -- the
convention for labels only allows five letters to be used on some
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assembler programs.
The first task for the routine is to discover the size and position in

memory of a$. We can find both the beginning and the end of the
BASIC variables area with the system variables VARS and ELINE.
Each time we define a variable in BASIC the interpreter looks through
the variables, starting from VARS, to check if that variable is already in
existence. If it is, the interpreter deletes it and closes the gap left behind
before placing the new variable at the end of the VARS area.

But. I hear you protest, what happens if I use a statement such as
LET A=A+1? To allow for this. the interpreter will always work out
what a variable is supposed to be before trying to store it. We can see
from the above that we are going to find the most recently defined
variables at the end of the VARS area, but unfortunately we have no
way of searching the area backwards to save time. If you study Chapter
24 of your Spectrum Manual, you will see that each type of variable can
be identified by its first byte, which holds the first letter of its name in
the low five bits and an identifier in the high three bits. It is therefore
possible to sort through for the type we are looking for.

First of all, the machine code routine finds the start of the VARS area
from the system variable, and then it fetches what is stored there. If it
finds an 80 hex it returns to BASIC, as this indicates the end of the
variables. Throughout this section of the program the routine uses the
HL register to keep track of where it has reached in the area: this
technique is known as 'pointing' HL at the data. If the byte fetched has
the pattern 111 in the high three bits, then the variable is a FOR .. .
NEXT control variable which is 18 bytes long and the pointer is added
to, so that it points to the next variable.

If the pattern is 101, then the number of the variable has a name or
more than one letter. In this case, the program searches through the
following bytes of the name. The BASIC interpreter sets bit 7 of the last
letter of the name to one, so we can use this to find the end of the name
and then add the Length of a numerical variable (five bytes) to the
pointer. A number variable with a name of only one letter has the
pattern 011, so when the program encounters this it simply adds five to
the pointer.

The remaining types of variable all have their size stored as two bytes,
Z80 fashion (that is, least significant byte first) as bytes 2 and 3, so the
program fetches this information. It then tests the name byte to see if it
is 41 hex, which is the code for a single dimension a$. If it is, then we
have located the required variable. Its starting address is stored in
DATA, the end is calculated by adding its length to the pointer, and
then it is stored in LENTH. If a$ was not found, then the next variable is
located in the same manner as above with the whole of the procedure
repeated until either a match is found or the 80h market is encountered.

So we have finally found a$ (unless we forgot to declare it)! The above
process is very similar to that which BASIC has to go through each time
it deals with a variable. so it's just as well machine code is so fast.

Now we can get on with printing the string. The second part of the
program fetches each byte of the variable in turn, using its own variable
DATA to keep track of its progress. Each time, before it fetches a
character for printing, it checks DATA against LENTH to see if it has
reached the end of the string. If it encounters any of the control codes it
reacts accordingly, 16h prompting it to fetch the next two bytes of the
string and place them in XPOS and YPOS. For each character, the
program must find the shape data for that letter in the character table —
this is quite simple because each shape takes up seven bytes, so we

• multiply the character code by seven and then add a base address (the
start of the table minus 32*7 for the unused ASCII codes). We must
then calculate the screen address from YPOS and the high five bits of
XPOS. using a very similar technique to that demonstrated earlier in the
book in the SCALC program (Program 10.2).

Now for the tricky part. We have the shape byte. the screen position,
and, from the low three bits of XPOS, we know how much offset needs
to be applied to the shape before it is placed on the screen. What we
must first do is make up a 'mask' that can be used to ensure that we do
not wipe any pixels that should remain undisturbed. We achieve this by
making up a 16-bit register containing 0000001111111111 binary and
then rotating it right circular for as many bits as the offset demands. The
shape is also placed in a 16-bit register and rotated in the same manner.
It is perhaps best to use an example to show what happens next. Assume
that we wish to place the six bits, 001110, fetched from the high six bits
of the shape byte in the table, with a six pixel offset on the screen. The
mask would be:

1111110000001111 binary

and the shape would be rotated to:

0000000011100000 binary

Obviously we must deal with two bytes of the screen. Say that they
contained:

1111111111111111 binary

If we AND the screen bytes with the mask byte, the result would be a
six-bit 'hole':

108
	 109



Inside Your Spectrum

1111110000001111 binary

Now by ORing the shape byte we get:

1111110011101111 binary

which is the desired result! The program has to work one byte at a time,
but the end result is the same. So each line of the shape is POKEd to the
screen until all seven lines of the character have been printed. When the
letter is complete, the program advances the print positions and then
fetches the next character of the string for printing, unless it has reached
.the end of the string.

I hope that the above description combined with a study of the
assembler listing will give you a good understanding of how the program
operates. You may wish to develop the sytem — it is quite possible to
reduce the width of the letters to five bytes at the expense of legibility. A
better proposition (and one which can be made to work!) is to use
proportional spacing: a letter I need only take up three pixels so, if you
store the width of each character in the table along with each shape,
your print routine can act accordingly. The program also indicates how
smooth one-pixel-at-a-time movement can be achieved for graphic
shapes.

Assembler listing for 42 column screen machine code
program
Note: The op codes are in hexadecimal and are for the 48K version.

Code Label Instruction
ORG FB9D

00 XPOS DEFB 00
00 YPOS DEFB 00
0000 DATA DEFW 0000
0000 LENTH DEFW 0000
0000 BUFFR DEFW 0000
2A4B5C FIND$ LD HL,(5C4B)

7E	 GETBY LD	 A,(HL)

47
	

LD	 B.A
FE80
	

CP	 80
C8
	

RET Z

23	 INC HL
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E6E0 AND E0 Mask of letter data from A
FE E° CP EO If not a control variable then
2006 JR NZ,NUM? jump to NUM?
111200 LD DE,0012 Add length of control variable
19 ADD HL,DE to pointer in HL
18EE JR GETBY Loop back to GETBY
FEAO	 NUM? CP At) If not a variable with a long
200B JR NZ,SNUM? name jump to SNUM?
CB7E	 TEST BIT 7,(HL) Find the last letter of the name,
23 INC HL set HL to point to next byte
28FB JR Z,TEST
110500	 ADDS LD DE.0005 Add the length of a numerical
19 ADD HL,DE variable to HL
18DF JR GETBY Jump to GETBY
FE60	 SNUM? CP 60 If a simple number variable
28F6 JR Z,ADD5 then jump to ADDS
5E LD E,(HL) Load DE with the length of
23 INC HL the BASIC variable and point
56 LD D,(HL) HL past length data
23 INC HL
78 LD A.B Restore first byte of variable

to A
FE41 CP 41 If BASIC variable is a single
2803 JR Z,STORE dimension a$ jump to STORE
19 ADD HL,DE Add the length of variable to

HL
18CF JR GETBY Loop back to GETBY
229FFB	 STORE LD (DATA),HL Store the location of a$ in

DATA
19 ADD HL,DE Load HL with address after a$
22A1FB LD (LENTH),HL and store it in LENTH
2A9FFB PRNTA LD HL,(DATA) • Load HL with address of

character to be printed
54 LD D,H Store HL in DE for quick

access
5D LD E,L
ED4BAIFB LD BC,(LENTH) Load BC with address after a$
A7 AND A Clear the carry flag
ED42 SBC HL,BC Compare current address with
DO RET NC BC and return to BASIC if it is

greater than or equal to it
EB EX DE,HL Restore current address to HL
7E LD A,(HL) Load A with character
23 INC HL Point HL to next character
229FFB LD (DATA),HL and store it
FE80 CP 80 If the character is equal or
DO RET NC greater than 80 return to

BASIC

• •

Comments
Start program from this
address
Set up eight bytes for use by
the program as variables

Set HL to the start of the
BASIC variables area
Load A with first byte of
BASIC variable
Save it in B
If it is the marker at the end
of the VARS area return to
BASIC
Point HL to second byte
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INC
LD
SLA
LD
ADD
ADD
LD

JR
CP
JR
LD
LD
SLA
RL

SLA
RL
SLA
RL
LD
LD
AND
SBC
LD
ADD

PUSH
POP
LD
LD
LD
AND
OR
LD
LD
AND
RRCA
RRCA

C
B
LOOP3
B,A
A,(DE)

(HL)
B
(DE),A
DE
HL
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C
B
LOOP1
(HL),A
A,C
(BUFFR+),A
A,(XPOS)

7
C,0
B,A
A.(IX)
Z,JMP2

FE 16
	

CP
2018
	

JR
7E
	

LD
FE 17
	

CP
3003
	

JR
329EFB
	

LD
23
	

TOOHI INC
7E
	

LD

23
229FFB
CB27
47
80
80
329DFB

18CE
FE20	 NL?
DAA5FC
6F
2600
CB25
CB14

CB25
CB14
CB25
CB14
1600
5F
A7
ED52
11D8FB
19

E5
DDE1
21A3FB
3A9EFB
5F
E618
F640
57
7B
E607
OF
OF

If the character is not 'AT'
jump to NL?
Get line position
If it is out of range (over 23)
jump to TOOHI
Set new line position
Point HL to column position
Load A with new column
position
Point HL to the next character
and store it
Multiply the line position in A
by 6

Set column position to new
value
Loop back to PRNTA
If the character is less than
20 jump to NEWLN
Place A into HL

Multiply HL by 7 so that it
can point to the character
table

Load DE with a base address
for the character table and add
it to HL
Transfer HL into IX which
now points to the shape table
Point HL to the buffer area
Load A with the screen line
Save A in E
Mask off section number
Add 0100000 binary
Store A in D
Restore line number in A
Isolate last 3 bits
Multiply A by 8

OF	 RRCA
5F	 LD
3A9DFB	 LD
CB3F	 SRL
CB3F	 SRL
CB3F	 SRL
83	 ADD
5F	 LD

OEFF	 LD
3A9DFB	 LD
E607	 AND
47	 LD
3E03	 LD
280A	 JR

37	 SCF
1F	 LOOP1 RRA
CB19	 RR	 C
1F	 RRA
CB 19	 RR
05	 DEC
10F7	 DJNZ
77	 TRNFR LD
79	 LD
32A4FB	 LD
3A9DFB	 LD

E607	 AND
OE00	 LD
47	 LD
DD7E00	 LD
2809	 JR

1F	 LOOP3 RRA
CB19	 RR	 C
1F	 RRA
CB 19	 RR
05	 DEC
10F7	 DJNZ
47	 JMP2	 LD
1A	 LD

A6	 AND
BO	 OR
12	 LD
13	 INC
23	 INC

Put A in E
Load A with column number
Divide A by 8

Add E to A and replace in E
DE now points to first screen
location
Place 11111111 binary in C
Load A with the number of
pixels displacement required
Store displacement in B
Load A with 00000011 binary
If displacement is zero then
jump to TRNFR
Make carry equal 1
Rotate the binary value
0000001111111111 right
circular the amount of
the displacement

Place the mask pattern in
BUFFR and BUFFR+1

Load A with pixel
displacement

Load C with 00000000 binary
Put displacement in B
Load A with shape byte
If displacement is zero jump to
JMP2
Rotate the shape right circular
by the amount of the
displacement

BC now contains the shape
Load A with what is already
on the screen
Mask out a space and
add in the shape
Poke new shape to screen
Point DE to next screen byte
Point HL to BUFFR+1

16
NZ,NL?
A,(HL)
17
NC,TOOHI
(YPOS),A
HL
A,(HL)

HL
(DATA),HL
A
B,A
A,B
A,B
(XPOS),A

PRNTA
20
NEWLN
L.A
H,0
L
H

L
H
L
H
D,0
E,A
A
HL,DE
DE.FBD8
HL,DE

HL
IX
HL,(BUFFER)
A,(YPOS)
E,A
18
40
D,A
A,E
7

E,A
A.(XPOS)
A
A
A
A.E
E,A

C.FF
A,(XPOS)
7
B,A
A,03
Z,TRNFR
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1A	 LD	 A,(DE) Repeat printing for second

byte

A6	 AND (HL)
B1	 OR	 C
12	 LD	 (DE),A
1B	 DEC DE Restore pointers in HL and

DE

2B	 DEC HL
DD23	 INC IX
14	 INC	 D
7A	 LD	 A,D
2F	 CPL
E607	 AND 7
20D4	 JR	 NZ,LOOP2

3A9DFB	 LD	 A,(XPOS)
C606	 ADD A,06
329DFB	 LD	 (XPOS),A
FEFA	 CP	 250 dec
DAEOFB	 JR	 C,PRNTA

AF	 NEWLN XOR A
329DFB	 LD	 (XPOS),A
3A9EFB	 LD	 A,(YPOS)
3C	 INC A
FE18	 CP	 18
CAEOFB	 JP	 Z,PRNTA
32AOFB	 LD	 (YPOS),A
C3EOFB	 JP	 PRNTA

Point IX at next shape
Point DE to next pixel line
Test D to find out if it has
its last three bits set

If they are not jump to
LOOP2
Load A with column position
and add 6
Store new position
Test to check if A has reached
end of line; if not jump to
PRNTA
Set A to zero
Set column position to zero
Load A with line position and
add 1
If print position has reached
the bottom jump to PRNTA
Store new line position
Jump back to PRNTA

00---	 TABLE DEFB Look-up table containing the
shapes of the characters

•
CHAPTER 13
Spectrum Speaks

You may remember that in the chapter on sound I mentioned the
possibility of a speaking Spectrum. Special speech-generating accessor-
ies may now be purchased that allow the production of words from
either the speaker or a loud extension speaker. The problem with
incorporating these effects into programs is that they will only run on
other Spectrums that have identical accessories fitted. At the cost of
reduced quality, the following program will allow you to include words
and messages that are intelligible if not exactly hi-fi. It will work on any
48K Spectrum and the results may even be placed back on a 16K
machine if you are using a few short words.

The first thing to explain is how to get the program into your machine.
The listing, Program 13.1, is all that is required. As you can see, it
contains machine code in the form of DATA statements which are
POKEd into RAM above an altered RAMTOP. When you have
entered the program (and made a safety copy), run it to see if there are
any errors in your data statements. A message will inform you if the
program detects an error. However, it is possible that, as the 'checksum'
method is very simple, two errors may have the effect of cancelling each
other out. If the program does not work then recheck the data
statements, or cross-check the RAM contents with the monitor
program, both against the decimal data and the hex op codes in the
assembler listing.

Program 13.1:
1 REM
2 REM

REM
4 REM

10 CLEAR _;2767: RESTORE : L.
OR	 2768 TO =2867: READ v:
+v: P01`:E „ v y: NEXT at BO SUB

11185 THEN PRINT "There i
in the DATA. ": S'T'OP

17 REM
18 REM	 Menu

The Spectrum Speaks
The Spectrum Speaks

Install code

ET sum 0: F
LET <sum=sum
;0:	 sum
s an error

114
	

115



Inside Your Spectmm

19 REM
20 CLS : PRINT AT 2,8;"SPECTRUM SPEEC

H": AT 6,7;"MENU:-^""1-",^To load speec
h"""2-","To edit speech""	 save
message"; AT 18,2;^Press the number you
require"
30 LET a$= INKEY$ : IF a$<"1^ OR a$Y'3

" THEN GO TO 30
40 GO SUB 100* VAL a$: GO TO 20
47 REM
48 REM	 Reset start,length
49 REM
50 LET start =0: LET length=28572
60 LET h= INT (start/256): LET l=start

-(256*h): POKE 32808,1: POKE 32809,h: LE
T h= INT (length/256): LET 1=length-(256
*h): POKE 32819,1: POKE 32820,n: RETURN

67 REM
68 REM	 Get keypress
69 REM
70 IF INKEY$ <> ^" THEN GO TO 7n
80 IF INKEY$ =^" THEN GO TO 80
90 RETURN
97 REM
98 REM	 Load message
99 REM
100 CLS : PRINT AT 3,1;"Start tape the

n press any key""
110 GO SUB 70: PRINT "Loading..."": RA

NDOMIZE USR 32768
120 PRINT "Message saved:-"""Press any
key to replay""
130 GO SUB 50: GO SUB 70: PRINT "Replay

ing...^: RANDOMIZE USR 32813
140 RETURN
197 REM
198 REM	 Edit message
199 REM
200 CLS : PRINT AT 3,3;"The editing op

tions are:-",'"1-"; TAG 10;^Change start
^".2-"; TAB 10;"Change length"""3-"; T
AB 10;"Restore old values"" . 4-"; TAB 10
;"Play message^" . 5-^; TAB 10;^Return to
menu"
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210 PRINT AT 17,4;^Press number requir
ed"; AT 20,0: ^ Start = ";start; TAB 5; AT 2
0,15; " Length =" ;length; TAB 5
220 LET aS= INKEY$ : IF a$<"1" OR a$>^5

" THEN GO TO 220
230 PRINT Ar 17,4; TAB 25: GO TO 10* V

AL a$+230
240 INPUT "New start?^;start: LET start

= ABS start: GO TO 210
250 INPUT "New length? " ;length: LET len

gth= ABS length: GO TO 210
260 GO SUB 50: GO TO 210
270 LET start = start+8: GO SUB 60: RANDO

MIZE USR 32807: LET start =start-8: GO T
0 210
280 GO SUB 60: RETURN
297 REM
298 REM	 Save message code
29? REM
300 CLS : FOR x =32867 TO 32813 STEP -1:
POKE x4-start, PEEK x: NEXT

310 INPUT ^Name?";a$: SAVE a$ CODE 3281
3+start,length: CLS : PRINT AT 10,5;^Re
wind tape and verify": VERIFY a$ CODE
320 PRINT AT 10,0;"Tape O.K. Size of r

outine=^ ;length""Press a key.........":
GO SUB 70: IF start<55 THEN GO TO 10
330 (70 TO 20
397 REM
398 REM
	

Machine code
399 REM
400 DATA 62,15,211,254,243,33,100,128
410 DATA 17,0,240,14,0,6,0,4
420 DATA 40,7,219254,230,64,185,40
430 DATA 246112,79,35,229,167,237,82
440 DATA 124,181,225,32,232,251,201,33
450 DATA 0,059,68,77,33,55,0
460 DATA 9229,17,z56,111,25,235, 225
470 DATA 5872,92,203,63,203,63,203
480 DATA 63 ,230,7,79,24370,4, 5
490 DATA 40,4,47,230,16,177, 2 11,254
500 DATA V,0,0,5,32,248,35,229
510 DATA 167,237,82,71,124,121,225,120
520 DATA 32 ,227,251,2O1
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3EOF	 LOAD LD	 A,OF
D3FE	 OUT (FE),A
F3	 DI
216480	 LD	 HL,8064

1100F0	 LD	 DE,F000
0E00	 LD	 C.00
0600	 NBYTE LD	 B4O0
04	 LISTN INC	 B
2807	 JR	 Z,STORE

DBFE	 IN	 A,(FE)
E640	 AND 40
B9	 CP	 C
28F6	 JR	 Z,LISTN
70	 LD	 (HL),B
4F	 LD	 C,A
23	 INC	 HL
E5	 PUSH HL
A7	 AND A
ED52	 SBC HL,DE
7C	 LD	 A,H
B5	 OR	 L

El	 POP HL

Clear port

Disable interrupts
Point HL to the beginning of
the storage table
Point DE at end of table
Clear C
Set counter to zero
Increase count by one
If count has cycled back to
zero then jump to STORE
Read port FE into A
Isolate bit 4
If A matches C (holding last
value read in) jump to LISTN
Store the count in the table
Load C with new port state
Point to next space in table
Save HL on the stack
Clear the carry flag
Compare HL with DE and if
equal (ie the pointer has
reached the end of the table)
then set the Z flag
Retrieve old value of HL
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Assuming that you have correctly loaded the program. this is how you
use it. The menu offers you three options. The first of these is for
entering the message that you wish your computer to utter. Record the
spech on cassette using the highest quality system you have available. If
you can use a cassette machine without an automatic level control, so
much the better as, when machines with this facility are used to record
from a microphone, they tend to accentuate the background noise
between words.

Now place the cassette, cued up to the start of the message, into the
cassette player that you use to save and load Spectrum programs with,
plugged up for loading. Initially, set the volume control to a little below
whatever you would normally use to load a program. Select option one
on the menu and the program will prompt you to start the tape and press
a key. Do this and, after a period of time, a messa ge will tell you that the
loading has finished. Again press a key, and with any luck you should
hear the speech played back.

If the time taken to load the speech was more than about ten seconds
and the playback is either just silence or silence plus very distorted
words, then you need to increase the volume setting on the cassette
player. If recording took less than three seconds but also playback was
distorted, then decrease the volume. Keep experimenting until you find
the optimum level and then mark the volume setting. You now have a
message inside the machine.

The second menu option allows you to `edit' the message so as to play
only the word or words you want and not the noise or silence either side.
First', keep increasing the 'start' parameter until the word you want is
said immediately you press the play key. Secondly, reduce the 'length'
value so that there is nothing extraneous on the end. When you are
happy with the result you can move on to option 3 which will save and
verify the machine code on tape.

Now you have recorded on tape a machine code program that will
speak a word or phrase. To incorporate it into another program, make a
note of the `size' given by option 3. This is the amount of space that must
be allowed for the code — you can load the code into any RAM location
that is free, provided there is sufficient room above. For example, let's
assume that 'size' is given as 4000, that is to say that the machine code
routine requires 4000 bytes of space. On the 48K machine RAMTOP is
normally 65367, so CLEAR 61367 will allow us to load the code using
LOAD "" CODE 61368. In order to get the Spectrum to speak the
message, use RAND USR the address that the code has been loaded to,
in this case 61368.

The principle behind the machine code section of the speech program
is quite simple — refer to the assembler listing for a detailed analysis.
The record routine monitors bit 6 of port FEh, and counts time with the
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B register. If the input from the tape changes state (ie switches from
high to low or vice versa), or if the B register becomes 'full' and cycles
back to zero, the contents of B are stored in a vast table of RAM, the
pointer is incremented, and the process repeats until the table is full.
Thus recording silence is much more efficient on memory than sound.
The replay routine is more or less the record routine in reverse. It
fetches data from the table and toggles the speaker through bit 4 of port
FEh at the pace dictated by the daa. The second routine is written so
that it can be position independent — when the 'turnkey' code is saved,
it is relocated at the start of the required section of data.

You can have a lot of fun with this program. despite its somewhat low
fidelity . It is quite possible to identify the speaker of the message, so
perhaps you could get Kenneth Kendall to record one for you!

Assembler listing for speech program machine code
Note: The op codes are given in hexadecimal.

Code	 Label	 Instruction	 Comments
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20E8	 JR	 NZ,NBYTE	 If Z flag not set jump to
NBYTE

FB	 EI	 Re-enable the interrupts
C9	 RET	 Return to BASIC
210000 TEST	 LD	 HL,0000	 Load HL with start offset
09	 ADD HL.BC	 Add HL to the 'RAND'
44	 LD	 B,H	 address held in BC and transfer
4D	 LD	 C,L	 result back into BC
213700 REPLY LD	 HL,0037	 Load HL with length of

REPLY
09	 ADD HL.BC	 Point HL to start of table
E5	 PUSH HL	 Store HL on the stack
119C6F	 LD	 DE,6F9C	 Load DE with size of table
19 •	 ADD HL,DE	 Point HL to end of table and
EB	 EX	 DE,HL	 transfer it to DE
El	 POP	 HL	 Restore HL
3A485C	 LD	 A,(5C48)	 Load A with contents of

BORDCR
CB3F	 SRL	 A	 Divide A by 8
CB3F	 SRL A
CB3F	 SRL A
E607	 AND 07	 Mask off high five bits
4F	 LD	 C,A	 Put border colour in C
F3	 DI	 Disable the interrupts
46	 OUTBY LD	 B.(HL)	 Load B with byte from table
04	 INC	 B	 Test B to see if it is zero
05	 DEC B
2804	 JR	 Z,LOOP	 If it is jump to LOOP
2F	 CPL	 Complement bit 4 of A
E610	 AND 10
B1	 OR	 C	 Add in the border colour
D3FE	 OUT (FE),A	 Output bit 4 of A to speaker
00	 NOP	 Delay so that speed of replay
00	 NOP	 matches record routine
00	 NOP
05	 DEC	 B	 Decrement counter and if not
20F8	 JR	 NZ,LOOP	 zero jump to LOOP
23	 INC	 HL	 Point HL to next byte
E5	 PUSH HL	 Store HL
A7	 AND A	 Reset carry flag
ED52	 SBC HL,DE
47	 LD	 B.A	 Store A
7C	 LD	 A,H	 If HL has reached end of table
B5	 OR	 L	 then set the zero flag
El	 POP	 HL	 Restore HL
78	 LD	 A,B	 Restore A
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20E3	 JR	 NZ,OUTBY	 If the Z flag is not set jump to
OUTBY

FB	 EI	 Enables the interrupts and
then

C9	 RET	 return to BASIC
00---	 TABLE	 A large free area of memory

Endword

We have reached the point where the hardware and firmware aspects of
using the Sinclair Spectrum have been covered. How you use the
information will depend on how you use your computer.

Some people drive a car with no desire to open the bonnet, others
prefer to have some idea of how it works even if they don't ever intend
getting their hands dirty. If you see yourself as a potential computer
'mechanic', then you will need to acquire machine code skills as well as a
great deal of patience. There are many books on the finer points of
hardware and Z80 machine code. As for books about patience .. .
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Other titles from Sunshine

SPECTRUM BOOKS

Spectrum Adventures
Tony Bridge & Roy Carnell

ZX Spectrum Astronomy
Maurice Gavin

ISBN 0946408 07 6	 £5.95

ISBN 0 946408 24 6	 £6.95

Spectrum Machine Code Applications
David Laine

The Working Spectrum
David Lawrence

Master your ZX Microdrive
Andrew Pennell

	

ISBN 0 946408 17 3	 £6.95

	0 946408 00 9	 £5.95ISBN 

	

ISBN 0 946408 19 X	 £6.95

COMMODORE 64 BOOKS

Graphic Art for the Commodore 64
Boris Allan	 ISBN 0 946408 15 7

	
£5.95

DIY Robotics and Sensors on the Commodore Computer
John Billingsley	 ISBN 0 946408 30 0	 £6.95

Artificial Intelligence on the Commodore 64
Keith and Steven Brain	 ISBN 0 946408 29 7	 £6.95

Machine Code Sound and Graphics for the Commodore 64
Mark England & David Lawrence	 ISBN 0 946408 28 9	 £6.95

Commodore 64 Adventures
Mike Grace	 ISBN 0 946408 11 4	 £5.95

Business Applications for the Commodore 64
James Hall	 ISBN 0 946408 12 2

	
£5.95

Mathematics on the Commodore 64
Czes Kosniowski	 ISBN 0 946408 14 9

	
£5.95

Advanced Programming Techniques on the Commore 64
David Lawrence	 ISBN 0 946408 23 8	 £5.95
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The Working Commodore 64
David Lawrence	 ISBN 0 946408 02 5	 £5.95

Commodore 64 Machine Code Master
David Lawrence & Mark England 	 ISBN 0 946408 05 X	 £6.95

Programming for Education on the Commodore 64
John Scriven & Patrick Hall	 ISBN 0 946408 27 0

	
£5.95

ELECTRON BOOKS

•
Artificial Intelligence on the Dragon Computer
Keith & Steven Brain	 ISBN 0 946408 33 5

Dragon 32 Games Master
Keith & Steven Brain	 ISBN 0 946408 03 3

The Working Dragon
David Lawrence	 ISBN 0 946408 01 7

The Dragon Trainer
Brian Lloyd
	

ISBN 0 946408 09 2

£6.95

£5.95

£5.95

£5.95

Graphic Art for the Electron Computer
Boris Allan	 ISBN 0 946408 20 3 £5.95

ATAR)C'BOOKS

Programming for Education on the Electron Computer
John Scriven & Patrick Hall	 ISBN 0 946408 21 1	 £5.95

Atari Adventures
Tony Bridge ISBN 0 946408 18 1	 £5.95

BBC COMPUTER BOOKS
Writing Strategy Games on your Atari Computer
John White	 ISBN 0 946408 22 X £5.95

Functional Forth for the BBC Computer
Boris Allan	 ISBN 0 946408 04 1	 £5.95

Graphic Art for the BBC Computer
Boris Allan	 ISBN 0 946408 08 4

	
£5.95

DIY Robotics and Sensors for the BBC Computer
John Billingsley	 ISBN 0 946408 13 0

	
£6.95

Artificial Intelligence on the BBC and Electron Computers
Keith & Steven Brain	 ISBN 0 946408 36 X	 £6.95

Essential Maths on the BBC and Electron Computers
Czes Kosniowski 	 ISBN 0 946408 34 3	 £5.95

Programming for Education on the BBC Computer
John Scriven & Patrick Hall	 ISBN 0 946408 10 6

	
£5.95

Making Music on the BBC Computer
Ian Waugh	 ISBN 0 946408 26 2

	
£5.95

DRAWN BOOKS

Advanced Sound & Graphics for the Dragon
Keith & Steven Brain	 ISBN 0 946408 06 8

	
£5.95

GENERAL

Home Applications on your Micro
Mike Grace	 ISBN 0 946408 50 5

	
£6.95
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Sunshine also publishes

POPULAR COMPUTING WEEKLY
The first weekly magazine for home computer users. Each copy contains
Top 10 charts of the best selling software and books and up-to-the-
minute details of the latest games. Other features in the magazine
include regular hardware and software reviews, programming hints,
computer swap. adventure corner and pages of listing for the Spectrum,
Dragon, BBC, VIC 20 and ZX 81 and other popular micros. Only 40p a
week, a year's subscription costs £19.95 (£9.98 for six months) in the UK
and £37.40 (£18.70 for six months) overseas.

DRAGON USER
The monthly magazine for all users of Dragon microcomputers. Each
issue contains reviews of software and peripherals, programming advice
for beginners and advanced users, program listings, a technical advisory
service and all the latest news related to the Dragon. A year's
subscription (12 issues) costs £10 in the UK and £16 overseas.

MICRO ADVENTURER
The monthly magazine for everyone interested in Adventure games,
war gaming and simulation/role-playing games. Includes reviews of all
the latest software, lists of all the software available and programming
advice. A year's subscription (12 issues) costs £10 in the UK and £16
overseas.

COMMODORE HORIZONS

The monthly magazine for all users of Commodore computers. Each
issue contains reviews of software and peripherals, programming advice
for beginners and advanced users, program listings, a technical advisory
service and all the latest news. A year's subscription costs £10 in the UK
and £16 overseas.

For further information contact:
Sunshine
12-13 Little Newport Street
London WC2R 3LD
01-437 4343
Telex: 296275
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