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How to read do mathematics

Reading mathematics is not the same as reading a novel—it’s more fun, and more
interactive! To read mathematics you need

(a) a pen,

(b) plenty of blank paper, and

(c) the courage to write down everything—even “obvious” things.

As you read a math book, you work along with me, the author, trying to anticipate
my next thoughts, repeating many of the same calculations I did to write this book.
You must write down each expression, sketch each graph, and constantly think

about what you are doing. You should work examples. You should fill-in the details
I left out. This is not an easy task; it is hard work, but, work that is, I very much
hope, rewarding in the end.

Mathematics is not a passive endeavor. I may call you a “reader” but you are
not reading; you are writing this book for yourself.

—the so-called “author”
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Introduction, or. . . what is this all about?

Consider the following sum:

1
2
+

1
4
+

1
8
+

1
16

+ · · ·+
1
2i

+ · · ·

The dots at the end indicate that the sum goes on forever. Does this make sense?
Can we assign a numerical value to an infinite sum? While at first it may seem
difficult or impossible, we have certainly done something similar when we talked
about one quantity getting “closer and closer” to a fixed quantity. Here we could
ask whether, as we add more and more terms, the sum gets closer and closer to
some fixed value. That is, look at

1
2
=

1
2

3
4
=

1
2
+

1
4

7
8
=

1
2
+

1
4
+

1
8

15
16

=
1
2
+

1
4
+

1
8
+

1
16

and so on, and ask whether these values have a limit. They do; the limit is 1. In
fact, as we will see,

1
2
+

1
4
+

1
8
+

1
16

+ · · ·+
1
2i

=
2i − 1

2i
= 1 −

1
2i

and then
lim
i→∞

1 −
1
2i

= 1 − 0 = 1.
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This is less ridiculous than it appears at first. In fact, you might already believe
that

0.33333̄ =
3
10

+
3

100
+

3
1000

+
3

10000
+ · · · =

1
3

,

which is similar to the sum above, except with powers of ten instead of powers of two.
And this sort of thinking is needed to make sense of numbers like π, considering

3.14159 . . . = 3 +
1
10

+
4

100
+

1
1000

+
5

10000
+

9
100000

+ · · · = π.

Before we investigate infinite sums—usually called series—we will investigate
limits of sequences of numbers. That is, we officially call

∞∑
i=1

1
2i

=
1
2
+

1
4
+

1
8
+

1
16

+ · · ·+
1
2i

+ · · ·

a series, while
1
2

,
3
4

,
7
8

,
15
16

, . . . ,
2i − 1

2i
, . . .

is a sequence. The value of a series is the limit of a particular sequence, that is,

∞∑
i=1

1
2i

= lim
i→∞

2i − 1
2i

.

If this all seems too obvious, let me assure you that there are twists and turns
aplenty. And if this all seems too complicated, let me assure you that we’ll be going
over this in much greater detail in the coming weeks. In either case, I hope that
you’ll join us on our journey.



1 Sequences

1.1 Notation

Maybe you are feeling that this formality is unnec-
essary, or even ridiculous; why can’t we just list off
a few terms and pick up on the pattern intuitively?
As we’ll see later, that might be very hard—nay,
impossible—to do! There might be very different—
but equally reasonable—patterns that start the same
way.

To resolve this ambiguity, it is perhaps not so
ridiculous to introduce the formalism of “functions.”
Functions provide a nice language for associating
numbers (terms) to other numbers (indices).

A “sequence” of numbers is just a list of numbers. For example, here is a list of
numbers:

1, 1, 2, 3, 5, 8, 13, 21, . . .

Note that numbers in the list can repeat. And consider those little dots at the
end! The dots “. . . ” signify that the list keeps going, and going, and going—forever.
Presumably the sequence continues by following the pattern that the first few “terms”
suggest. But what’s that pattern?

To make this talk of “patterns” less ambiguous, it is useful to think of a sequence
as a function. We have up until now dealt with functions whose domains are the
real numbers, or a subset of the real numbers, like f (x) = sin(1/x).

A real-valued function with domain the natural numbers N = {1, 2, 3, . . .} is a
sequence.

Other functions will also be regarded as sequences: the domain might include
0 alongside the positive integers, meaning that the domain is the non-negative
integers, Z≥0 = {0, 1, 2, 3, . . .}. The range of the function is still allowed to be the
real numbers; in symbols, the function f : N→ R is a sequence.

Sequences are written down in a few different, but equivalent, ways; you might
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see a sequence written as

a1, a2, a3, . . . ,

an

(an)n∈N ,

{an}
∞
n=1 ,{

f (n)
}∞
n=1 , or

(f (n))n∈N ,

depending on which author you read. Worse, depending on the situation, the
same author (and this author) might use various notations for a sequence! In this
textbook, I will usually write (an) if I want to speak of the sequence as a whole
(think gestalt) and I will write an if I am speaking of a specific term in the sequence.

Let’s summarize the preceding discussion in the following definition.

Definition A sequence (an) is, formally speaking, a real-valued function with
domain

{n ∈ Z : n ≥ N}, for some integer N .

Stated more humbly, a sequence assigns a real number to the integers starting
with an index N .

The “outputs” of a sequence are the terms of the sequence; the “nth term” is
the real number that the sequence associates to the natural number n, and
is usually written an. The n in the phrase “nth term” is called an index; the
plural of index is either indices or indexes, depending on who you ask. The
first index N is called the initial index.

Recall that the natural numbers N are the counting
numbers 1, 2, 3, 4, . . .. If we want our sequence to
start at zero, we use Z≥0 as the domain instead.
The fancy symbols Z≥0 refer to the non-negative
integers, which include zero (since zero is neither
positive nor negative) and also positive integers (since
they certainly aren’t negative).
To confuse matters further, some people—especially
computer scientists—might include zero in the natu-
ral numbers N. Mathematics is cultural.

Warning Usually the “domain” of a sequence is N and Z≥0. But depending
on the context, it may be convenient for a sequence to start somewhere else—
perhaps with some negative number. We shouldn’t let the usual situation of N

or Z≥0 get in the way of making the best choice for the problem at hand.
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As you can tell, there is a deep tension between precise definition and a vague
flexibility; as instructors, how we navigate that tension will be a big part of whether
we are successful in teaching the course. We need to invoke precision when we’re
tempted to be too vague, and we need to reach for an extra helping of vagueness
when the formalism is getting in the way of our understanding. It can be a tough
balance.

1.2 Defining sequences

1.2.1 Defining sequences by giving a rule

Just as real-valued functions from Calculus One were usually expressed by a
formula, we will most often encounter sequences that can be expressed by a
formula. In the Introduction to this textbook, we saw the sequence given by the rule
ai = f (i) = 1 − 1/2i . Other examples are easy to cook up, like

ai =
i

i + 1
,

bn =
1
2n

,

cn = sin(nπ/6), or

di =
(i − 1)(i + 2)

2i
.

Frequently these formulas will make sense if thought of either as functions with
domain R or N, though occasionally the given formula will make sense only for
integers. We’ll address the idea of a real-valued function “filling in” the gaps between
the terms of a sequence when we look at graphs in Section 1.5.

Warning A common misconception is to confuse the sequence with the rule
for generating the sequence. The sequences (an) and (bn) given by the rules
an = (−1)n and bn = cos(π n) are, despite appearances, different rules which
give rise to the same sequence. These are just different names for the same
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object.

Let’s give a precise definition for “the same” when speaking of sequences. Compare this to equality for functions: two func-
tions are the same if they have same domain and
codomain, and they assign the same value to each
point in the domain.Definition Suppose (an) and (bn) are sequences starting at 1. These se-

quences are equal if for all natural numbers n, we have an = bn.
More generally, two sequences (an) and (bn) are equal if they have the same

initial index N , and for every integer n ≥ N , the nth terms have the same value,
that is,

an = bn for all n ≥ N .

In other words, sequences are the same if they have the same set of valid indexes,
and produce the same real numbers for each of those indexes—regardless of whether
the given “rules” or procedures for computing those sequences resemble each other
in any way.

1.2.2 Defining sequences using previous terms
You might be familiar with recursion from a computer
science course.Another way to define a sequence is recursively, that is, by defining the later outputs

in terms of previous outputs. We start by defining the first few terms of the sequence,
and then describe how later terms are computed in terms of previous terms.

Example 1.2.1 Define a sequence recursively by

a1 = 1, a2 = 3, a3 = 10,

and the rule that an = an−1 − an−3. Compute a5.

Solution First we compute a4. Substituting 4 for n in the rule an = an−1 −

an−3, we find
a4 = a4−1 − a4−3 = a3 − a1.

But we have values for a3 and a1, namely 10 and 1, respectively. Therefore
a4 = 10 − 1 = 9.

Now we are in a position to compute a5. Substituting 5 for n in the rule
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an = an−1 − an−3, we find

a5 = a5−1 − a5−3 = a4 − a2.

We just computed a4 = 9; we were given a2 = 3. Therefore a5 = 9 − 3 = 6.

You can imagine some very complicated sequences
defined recursively. Make up your own sequence
and share it with your friends! Use the hashtag
#sequence.

1.3 Examples

Tons of entertaining sequences are listed in the The
On-Line Encyclopedia of Integer Sequences.Mathematics proceeds, in part, by finding precise statements for everyday concepts.

We have already done this for sequences when we found a precise definition
(“function from N to R”) for the everyday concept of “a list of real numbers.” But
all the formalisms in the world aren’t worth the paper they are printed on if there
aren’t some interesting examples of those precise concepts. Indeed, mathematics
proceeds not only by generalizing and formalizing, but also by focusing on specific,
concrete instances. So let me share some specific examples of sequences.

But before I can share these examples, let me address a question: how can I
hand you an example of a sequence? It is not enough just to list off the first few
terms. Let’s see why.

Example 1.3.1 Consider the sequence (an)

a1 = 41, a2 = 43, a3 = 47, a4 = 53, . . .

What is the next term a5? Can you identify the sequence?

This particular polynomial n2 −n+41 is rather inter-
esting, since it outputs many prime numbers. You
can read more about it at the OEIS.

Solution In spite of many so-called “intelligence tests” that ask questions just
like this, this question simply doesn’t have an answer. Or worse, it has too
many answers!

This sequence might be “the prime numbers in order, starting at 41.” If
that’s the case, then the next term is a5 = 59. But maybe this sequence is the
sequence given by the polynomial an = n2 − n + 41. If that’s the case, then
the next term is a5 = 61. Who is to say which is the “better” answer?

Recall that a prime number is an integer greater
than one that has no positive divisors besides itself
and one.

Now let’s consider two popular “families” of sequences.

https://twitter.com/search?q=%23sequence
https://twitter.com/search?q=%23sequence
http://oeis.org/
http://oeis.org/
http://oeis.org/A005846
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1.3.1 Arithmetic sequences

The first family1 we consider are the “arithmetic” sequences. Here is a definition. 1 Mathematically, the word family does not have an
entirely precise definition; a family of things is a
collection or a set of things, but family also has a
connotation of some sort of relatedness.Definition An arithmetic progression (sometimes called an arithmetic se-

quence) is a sequence where each term differs from the next by the same, fixed
quantity.

Example 1.3.2 An example of an arithmetic progression is the sequence (an)

which begins

a1 = 10, a2 = 14, a3 = 18, a4 = 22, . . .

and which is given by the rule an = 6 + 4n. Each term differs from the
previous by four.

In general, an arithmetic progression in which subsequent terms differ by m can
be written as

an = m (n − 1) + a1.

Alternatively, we could describe an arithmetic progression recursively, by giving a
starting value a1, and using the rule that an = an−1 +m. Why are arithmetic progressions called arithmetic?

Note that every term is the arithmetic mean, that
is, the average, of its two neighbors.

An arithmetic progression can decrease; for instance,

17, 15, 13, 11, 9, . . .

is an arithmetic progression.

1.3.2 Geometric sequences

The second family we consider are geometric progressions.
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Definition A geometric progression (sometimes called a geometric sequence)
is a sequence where the ratio between subsequent terms is the same, fixed
quantity.

Example 1.3.3 An example of a geometric progression is the sequence (an)

starting
a1 = 10, a2 = 30, a3 = 90, a4 = 270, . . .

and given by the rule an = 10 · 3n−1. Each term is three times the preceding
term.

In general, a geometric progression in which the ratio between subsequent terms
is r can be written as

an = a1 · r
n−1.

Alternatively, we could describe a geometric progression recursively, by giving a
starting value a1, and using the rule that an = r · an−1. Why are geometric progressions called geometric?

Note that every term is the geometric mean of its
two neighbors. The geometric mean of two numbers
a and b is defined to be

√
ab.

Of course, that raises another question: why is
the geometric mean called geometric? One geometric
interpretation of the geometric mean of a and b is
this: the geometric mean is the side length of a
square whose area is equal to that of the rectangle
having side lengths a and b.

A geometric progression needn’t be increasing. For instance, in the following
geometric progression

7
5

,
7
10

,
7
20

,
7
40

,
7
80

,
7

160
, . . .

the ratio between subsequent terms is one half, and each term is smaller than the
previous.

1.3.3 Triangular numbers

The sequence of triangular numbers (Tn) is a sequence of integers counting the
number of dots in increasingly large “equilateral triangles” built from dots. The term
Tn is the number of dots in a triangle with n dots to a side.

There are a couple of ways of making this discussion more precise. Given an
equilateral triangle with n dots to a side, how many more dots do you need to build
the equilateral triangle with n + 1 dots to a side? All you need to do to transform
the smaller triangle to the larger triangle is an additional row of n + 1 dots placed
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T1 = 1
T2 = 3

T3 = 6
T4 = 10

T5 = 15
T6 = 21

Figure 1.1: The first six triangular numbers

along any side. Therefore,

Tn+1 = Tn + (n + 1).

Since T1 = 1, this recursive definition suffices to determine the whole sequence.
But there are other ways of computing Tn. Indeed, you may recall the explicit

formula

Tn =
n · (n + 1)

2

from Calculus One.

1.3.4 Fibonacci numbers
The Fibonacci numbers are interesting enough that
a journal, The Fibonacci Quarterly is published
four times yearly entirely on topics related to the
Fibonacci numbers.

The Fibonacci numbers are defined recursively, starting with

F0 = 0 and F1 = 1

and the rule that Fn = Fn−1 + Fn−2. We can restate this formula in words, instead
of symbols; stated in words, each term is the sum of the previous two terms. So the
sequence of Fibonacci numbers begins

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

and continues.
This is certainly not the last time we will see the Fibonacci numbers.

http://www.fq.math.ca/
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1.3.5 Collatz sequence

Here is a fun sequence with which to amuse your friends—or distract your enemies.
Let’s start our sequence with a1 = 6. Subsequent terms are defined using the rule

an =

an−1/2 if an−1 is even, and

3an−1 + 1 if an−1 is odd.

Let’s compute a2. Since a1 is even, we follow the instructions in the first line, to find
that a2 = a1/2 = 3. To compute a3, note that a2 is odd so we follow the instruction
in the second line, and a3 = 3a2 + 1 = 3 · 3 + 1 = 10. Since a3 is even, the first
line applies, and a4 = a3/2 = 10/2 = 5. But a4 is odd, so the second line applies,
and we find a5 = 3 · 5+ 1 = 16. And a5 is even, so a6 = 16/2 = 8. And a6 is even,
so a7 = 8/4 = 4. And a7 is even, so a8 = 4/2 = 2, and then a9 = 2/2 = 1. Oh,
but a9 is odd, so a10 = 3 · 1 + 1 = 4. And it repeats. Let’s write down the start of
this sequence:

6, 3, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1,

repeats︷       ︸︸       ︷
4, 2, 1, 4, . . .

What if we had started with a number other than six? What if we set a1 = 25 but
then we used the same rule? In that case, since a1 is odd, we compute a2 by finding
3a1 + 1 = 3 · 25 + 1 = 76. Since 76 is even, the next term is half that, meaning
a3 = 38. If we keep this up, we find that our sequence begins

25, 76, 38, 19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26,

13, 40, 20, 10, 5, 16, 8, 4, 2, 1, . . .

and then it repeats “4, 2, 1, 4, 2, 1, . . . ” just like before. If you think you have an argument that answers
the Collatz conjecture, I challenge you to try your
hand at the 5x + 1 conjecture, that is, use the rule

an =

an−1/2 if an−1 is even, and
5an−1 + 1 if an−1 is odd.

Does this always happen? Is it true that no matter which positive integer you
start with, if you apply the half-if-even, 3x + 1-if-odd rule, you end up getting stuck
in the “4, 2, 1, . . . ” loop? That this is true is the Collatz conjecture; it has been
verified for all starting values below 5× 260. Nobody has found a value which doesn’t
return to one, but for all anybody knows there might well be a very large initial value
which doesn’t return to one; nobody knows either way. It is an unsolved problem2 2 This is not the last unsolved problems we will en-

counter in this course. There are many things which
humans do not understand.

in mathematics.
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1.4 Where is a sequence headed? Take a limit!

We’ve seen a lot of sequences, and already there are a few things we might notice.
For instance, the arithmetic progression

1, 8, 15, 22, 29, 36, 43, 50, 57, 64, 71, 78, 85, 92, . . .

just keeps getting bigger and bigger. No matter how large a number you think of, if
I add enough 7’s to 1, eventually I will surpass the giant number you thought of.
On the other hand, the terms in a geometric progression where each term is half
the previous term, namely

1
2

,
1
4

,
1
8

,
1
16

,
1
32

,
1
64

,
1

128
,

1
256

,
1

512
,

1
1024

, . . . ,

are getting closer and closer to zero. No matter how close you stand near but not at
zero, eventually this geometric sequence gets even closer than you are to zero.

These two sequences have very different stories. One shoots off to infinity; the
other zooms in towards zero. Mathematics is not just about numbers; mathematics
provides tools for talking about the qualitative features of the numbers we deal
with. What about the two sequences we just considered? They are qualitatively very
different. The first “goes to” infinity; the second “goes to” zero. If you were with us in Calculus One, you are perhaps

already guessing that by “goes to,” I actually mean
“has limit.”

In short, given a sequence, it is helpful to be able to say something qualitative
about it; we may want to address the question such as “what happens after a while?”
Formally, when faced with a sequence, we are interested in the limit

lim
i→∞

f (i) = lim
i→∞

ai .

In Calculus One, we studied a similar question about

lim
x→∞

f (x)

when x is a variable taking on real values; now, in Calculus Two, we simply want to
restrict the “input” values to be integers. No significant difference is required in the
definition of limit, except that we specify, perhaps implicitly, that the variable is an
integer.
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Definition Suppose that (an) is a sequence. To say that lim
n→∞

an = L is to say
that

for every ε > 0,
there is an N > 0,

so that whenever n > N ,
we have |an − L | < ε.

If lim
n→∞

an = L we say that the sequence converges. If there is no finite value L
so that lim

n→∞
an = L, then we say that the limit does not exist, or equivalently

that the sequence diverges.

The definition of limit is being written as if it were
poetry, what with line breaks and all. Like the best
of poems, it deserves to be memorized, performed,
internalized. Humanity struggled for millenia to find
the wisdom contained therein.

Warning In the case that lim
n→∞

an = ∞, we say that (an) diverges, or perhaps

more precisely, we say (an) diverges to infinity. The only time we say that a
sequence converges is when the limit exists and is equal to a finite value.

One way to compute the limit of a sequence is to compute the limit of a function.

Theorem 1.4.1 Let f (x) be a real-valued function. If an = f (n) defines
a sequence (an) and if lim

x→∞
f (x) = L in the sense of Calculus One, then

lim
n→∞

an = L as well.

Example 1.4.2 Since lim
x→∞

(1/x) = 0, it is clear that also lim
n→∞

(1/n) = 0; in
other words, the sequence of numbers

1
1

,
1
2

,
1
3

,
1
4

,
1
5

,
1
6

, . . .

get closer and closer to 0, or more precisely, as close as you want to get to zero,
after a while, all the terms in the sequence are that close.

More precisely, no matter what ε > 0 we pick, we can find an N big enough
so that, whenever n > N , we have that 1/n is within ε of the claimed limit,
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zero. This can be made concrete: let’s suppose we set ε = 0.17. What is a
suitable choice for N in response? If we choose N = 5, then whenever n > 5
we have 0 < 1/n < 0.17.

But it is important to note that the converse3 of this theorem is not true. To 3 The converse of a statement is what you get when
you swap the assumption and the conclusion; the
converse of “if it is raining, then it is cloudy” is the
statement “if it is cloudy, then it is raining.” Which
of those statements is true?

show the converse is not true, it is enough to provide a single example where it fails.
Here’s the counterexample4.

4 An instance of (a potential) general rule being bro-
ken is called a counterexample. This is a popular
term among mathematicians and philosophers.

Example 1.4.3 Consider the sequence (an) given by the rule an = f (n) =

sin(nπ). This is the sequence

sin(0π), sin(1π), sin(2π), sin(3π), . . . ,

which is just the sequence 0, 0, 0, 0, . . . since sin(nπ) = 0 whenever n is an
integer. Since the sequence is just the constant sequence, we have

lim
n→∞

f (n) = lim
n→∞

0 = 0.

But lim
x→∞

f (x), when x is real, does not exist: as x gets bigger and bigger,

the values sin(xπ) do not get closer and closer to a single value, but instead
oscillate between −1 and 1.

Here’s some general advice. If you want to know lim
n→∞

an, you might first think

of a function f (x) where an = f (n), and then attempt to compute lim
x→∞

f (x). If the
limit of the function exists, then it is equal to the limit of the sequence. But, if
for some reason lim

x→∞
f (x) does not exist, it may nevertheless still be the case that

lim
n→∞

f (n) exists—you’ll just have to figure out another way to compute it.

5 10 15 20

−1

1

2

f (x)

an

x and n

y

Figure 1.2: Plots of f (x) = cos(π x) + (4/5)x and
the sequence an = (−1)n + (4/5)n .

1.5 Graphs

It is occasionally useful to think of the graph of a sequence. Since the function is
defined only for integer values, the graph is just a sequence of dots. In Figure 1.2 we
see the graph of a sequence and the graph of a corresponding real-valued function.

There are lots of real-valued functions which “fill in” the missing values of a
sequence.
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Example 1.5.1 Here’s a particularly tricky example of “filling in” the missing
values of a sequence. Consider the sequence

1, 2, 6, 24, 120, 720, 5040, 40320, 362880, . . . ,

where the nth term is the product of the first n integers. In other words an = n!,
where the exclamation mark denotes the factorial function. Explicitly describe
a function f of a real variable x, so that an = f (n) for natural numbers n.

1 2 3 4

5

10

15

20

25

f (x)

an

x and n

y

Figure 1.3: A plot of f (x) = bxc! and an = n!. Recall
that, by convention, 0! = 1.

Solution There are lots of solutions. Here is a solution:

f (x) = bxc!.

In that definition, bxc denotes the “greatest integer less than or equal to x” and
is called the floor function. This is shown in Figure 1.3.

On the other hand, there are much trickier things that you could try to do.
If you define the Gamma function

Γ(z) =
∫ ∞

0
tz−1e−t dt.

then it is perhaps very surprising to find out that g(x) = Γ(x + 1) is a function
so that g(n) = n! for natural numbers n. A graph is shown in Figure 1.4.
Unlike f , which fails to be continuous, the function g is continuous.

It is hard to define the “greatest integer” function,
because they are all pretty great.

1 2 3 4

5

10

15

20

25

f (x)

an

x and n

y

Figure 1.4: Plots of f (x) =
∫ ∞

0
tze−t dt. and an =

n!.

1.6 New sequences from old

Given a sequence, one way to build a new sequence is to start with the old sequence,
but then throw away a whole bunch of terms. For instance, if we started with the
sequence of perfect squares

1, 4, 9, 16, 25, 36, 49, 64, 81, . . .

we could throw away all the odd-indexed terms, and be left with

4, 16, 36, 64, 100, 144, 196, 256, 324, 400, 484, . . .
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We say that this latter sequence is a subsequence of the original sequence. Here is
a precise definition.

Definition Suppose (an) is a sequence with initial index N , and suppose we
have a sequence of integers (ni) so that

N ≤ n1 < n2 < n3 < n4 < n5 < · · ·

Then the sequence (bi) given by bi = ani is said to be a subsequence of the
sequence an.

Limits are telling the story of “what happens” to a sequence. If the terms of a
sequence can be made as close as desired to a limiting value L, then the subsequence
must share that same fate.

Theorem 1.6.1 If (bi) is a subsequence of the convergent sequence (an), then
lim
i→∞

bi = lim
n→∞

an.

Of course, just because a subsequence converges does not mean that the larger
sequence converges, too. We’ll see this again in more detail when we get to
Example 1.7.6, but we’ll discuss it briefly now.

Example 1.6.2 Find a convergent subsequence of the sequence (an) given by
the rule an = (−1)n.

Solution Note that the sequence (an) does not converge. But by considering
the sequence of indexes ni = 2 · i, we can build a subsequence

bi = ani = a2i = (−1)2i = 1,

which is a constant sequence, so it converges to 1.
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There are other subsequences of an = (−1)n which converge but do not converge
to one. For instance, the subsequence of odd indexed terms is the constant sequence
cn = −1, which converges to −1. For that matter, the fact that there are convergent
subsequences with distinct limits perhaps explains why the original sequence (an)

does not converge. Let’s formalize this.

Corollary 1.6.3

Suppose (bi) and (ci) are convergent subsequences of the sequence (an),
but

lim
i→∞

bi , lim
i→∞

ci .

Then the sequence (an) does not converge.

Proof Suppose, on the contrary, the sequence (an) did converge. Then by

Theorem 1.6.1, the subsequence (bi) would converge, too, and

lim
i→∞

bi = lim
n→∞

an .

Again by Theorem 1.6.1, the subsequence (ci) would converge, too, and

lim
i→∞

ci = lim
n→∞

an .

But then lim
i→∞

bi = lim
i→∞

ci , which is exactly what we are supposing doesn’t

happen! To avoid this contradiction, it must be that our original assumption that

(an) converged was incorrect; in short, the sequence (an) does not converge.

1.7 Helpful theorems about limits

Not surprisingly, the properties of limits of real functions translate into properties
of sequences quite easily.
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Theorem 1.7.1 Suppose that lim
n→∞

an = L and lim
n→∞

bn = M and k is some
constant. Then

lim
n→∞

kan = k lim
n→∞

an = kL,

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn = L +M ,

lim
n→∞

(an − bn) = lim
n→∞

an − lim
n→∞

bn = L −M ,

lim
n→∞

(anbn) = lim
n→∞

an · lim
n→∞

bn = LM , and

lim
n→∞

an
bn

=
limn→∞ an
limn→∞ bn

=
L

M
, provided M , 0.

1.7.1 Squeeze Theorem

Likewise, there is an analogue of the squeeze theorem for functions.

Theorem 1.7.2 Suppose there is some N so that for all n > N , it is the case
that an ≤ bn ≤ cn. If

lim
n→∞

an = lim
n→∞

cn = L

, then lim
n→∞

bn = L.

And a final useful fact:

Theorem 1.7.3 lim
n→∞

|an | = 0 if and only if lim
n→∞

an = 0.

Sometimes people write “iff” as shorthand for “if and
only if.”This says simply that the size of an gets close to zero if and only if an gets close

to zero.
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1.7.2 Examples

Armed with these helpful theorems, we are now in a position to work a number of
examples.

Example 1.7.4 Determine whether the sequence (an) given by the rule an =
n

n + 1
converges or diverges. If it converges, compute the limit.

Solution Consider the real-valued function

f (x) =
x

x + 1
.

Since an = f (n), it will be enough to find lim
x→∞

f (x) in order to find lim
n→∞

an . We
compute, as in Calculus One, that

lim
x→∞

x

x + 1
= lim

x→∞

(x + 1) − 1
x + 1

= lim
x→∞

(x + 1
x + 1

−
1

x + 1

)
= lim

x→∞

(
1 −

1
x + 1

)
= lim

x→∞
1 − lim

x→∞

1
x + 1

= 1 − lim
x→∞

1
x + 1

= 1 − 0 = 1.

We therefore conclude that lim
n→∞

an = 1.

And this is reasonable: by choosing n to be a large
enough integer, I can make

n

n + 1
as close to 1 as I

would like. Just imagine how close
10000000000
10000000001is to one.

Example 1.7.5 Determine whether the sequence (an) given by an =
logn
n

converges or diverges. If it converges, compute the limit.

Solution By l’Hôpital’s rule, we compute

lim
x→∞

log x
x

= lim
x→∞

1/x
1

= 0.
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Therefore,

lim
n→∞

logn
n

= 0.

I’m not too fond of l’Hôpital’s rule, so I would have
been happier if I had given a solution that didn’t
involve it; you could avoid mentioning l’Hôpital’s
rule in Example 1.7.5 if you used, say, the squeeze
theorem and the fact that logn ≤

√
n.

Example 1.7.6 Determine whether the sequence (an) given by the rule an =

(−1)n converges or diverges. If it converges, compute the limit.

Solution Your first inclination might be to consider the “function” f (x) =

(−1)x , but you’ll run into trouble when trying to tell me the value of f (1/2).
How does the sequence an = (−1)n begin? It starts

−1, 1, −1, 1, −1, 1, −1, 1, −1, 1, . . . ,

so the sequence isn’t getting close to any number in particular.
Intuitively, the above argument is probably pretty convincing. But if you

want an airtight argument, you can reason like this: suppose—though we’ll
soon see that this is a ridiculous assumption—that the sequence an = (−1)n

did converge to L. Then any subsequence would also converge to L, by
Theorem 1.6.1 which stated that the limit of a subsequence is the same as the
limit of the original sequence. If I throw away every other term of the sequence
(an), I am left with the constant sequence

−1, −1, −1, −1, −1, −1, −1, . . . ,

which converges to −1, and so L must be −1.
On the other hand, if I throw away all the terms with odd indices and keep

only those terms with even indices, I am left with the constant subsequence

1, 1, 1, 1, 1, 1, 1, . . . ,

so L must be 1. Since L can’t be both −1 and 1, it couldn’t have been the case
that lim

n→∞
an = L for a real number L. In other words, the limit does not exist.

I imagine that the “airtight argument” in the solution
to Example 1.7.6 is difficult to understand. Please
don’t worry if you find the argument confusing now—
we’ll have more opportunities for doing these sorts
of proofs by contradiction in the future.

http://en.wikipedia.org/wiki/Proof_by_contradiction
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Example 1.7.7 Determine whether the sequence an = (−1/2)n converges or
diverges. If it converges, compute the limit.

In this problem, you must be very careful to recognize
the difference between (−1/2)n and −(1/2)n . The
former flip-flops between being positive and being
negative, while the latter is always negative.

Solution Let’s use the Squeeze Theorem. Consider the sequences bn =

−(1/2)n and cn = (1/2)n. Then bn ≤ an ≤ cn. And lim
n→∞

cn = 0 because

lim
x→∞

(1/2)x = 0. Since bn = −cn, we have lim
n→∞

bn = − lim
n→∞

cn = −0 = 0.
Since bn and cn converge to zero, the squeeze theorem tells us that lim

n→∞
an = 0

as well.
If you don’t want to mention the Squeeze Theorem, you could instead

apply Theorem 1.7.3. In that case, we would again consider the sequence
cn = |an | and observe that lim

n→∞
cn = 0. But then Theorem 1.7.3 steps in,

and tells us that lim
n→∞

an = 0 as well. Of course, a convincing argument for
why Theorem 1.7.3 works at all goes via the squeeze theorem, so this second
method is not so different from the first.

Example 1.7.8 Determine whether an =
sinn
√
n

converges or diverges. If it

converges, compute the limit.

Solution Since −1 ≤ sinn ≤ 1, we have

−1
√
n
≤

sinn
√
n
≤

1
√
n

,

and can therefore apply the Squeeze Theorem. Since lim
x→∞

1
√
x
= 0, we get

lim
n→∞

−1
√
n
= lim

n→∞

1
√
n
= 0,

and so by squeezing, we conclude lim
n→∞

an = 0.

You might be wondering why I love the Squeeze
Theorem so much; one reason is that the Squeeze
Theorem gets you into the idea of “comparing” one
sequence to another, and this “comparison” idea will
be big when we get to convergence tests in Chapter 3.

Example 1.7.9 A particularly common and useful sequence is the geometric
progression an = rn for a fixed real number r. For which values of r does this
sequence converge?
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Solution It very much does depend on r.
If r = 1, then an = (1)n is the constant sequence

1, 1, 1, 1, 1, 1, 1, 1, . . . ,

so the sequence converges to one. A similarly boring fate befalls the case r = 0,
in which case an = (0)n converges to zero.

If r = −1, we are reprising the sequence which starred in Example 1.7.6; as
we saw, that sequence diverges.

If either r > 1 or r < −1, then the terms an = rn can be made as large as
one likes by choosing n large enough (and even), so the sequence diverges.

If 0 < r < 1, then the sequence converges to 0.
If −1 < r < 0 then |rn | = |r |n and 0 < |r | < 1, so the sequence {|r |n}∞n=0

converges to 0, so also {rn}∞n=0 converges to 0.

That last example of a geometric progression is involved enough that it deserves
to be summarized as a theorem.

Theorem 1.7.10 The sequence an = rn converges when −1 < r ≤ 1, and
diverges otherwise. In symbols,

lim
n→∞

rn =


0 if -1<r<1,

1 if r=1, and

does not exist if r ≤ −1 or r > 1.

1.8 Qualitative features of sequences

Your first exposure to mathematics might have been
about constructions; you might have been asked to
compute a numeric answer or to propose a solution
to a problem. But much of mathematics is concerned
with showing existence, even if the thing that is
being shown to exist cannot be exhibited itself.

Sometimes we will not be able to determine the limit of a sequence, but we still
would like to know whether or not it converges to some unspoken number. In many
cases, we can determine whether a limit exists, without needing to—or without even
being able to—compute that limit.
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1.8.1 Monotonicity

And sometimes we don’t even care about limits, but we’d simply like some terminol-
ogy with which to describe features we might notice about sequences. Here is some
of that terminology. For instance, how much money I have on day n is

a sequence; I probably hope that sequence is an
increasing sequence.

Definition A sequence is called increasing (or sometimes strictly increasing)
if an < an+1 for all n. It is called non-decreasing if an ≤ an+1 for all n.

Similarly a sequence is decreasing (or, by some people, strictly decreasing)
if an > an+1 for all n and non-increasing if an ≥ an+1 for all n.

To make matters worse, the people who insist on saying “strictly increasing” may—
much to everybody’s confusion—insist on calling a non-decreasing sequence “in-
creasing.” I’m not going to play their game; I’ll be careful to say “non-decreasing”
when I mean a sequence which is getting larger or staying the same.

To make matters better, lots of facts are true for sequences which are either
increasing or decreasing; to talk about this situation without constantly saying
“either increasing or decreasing,” we can make up a single word to cover both cases.

Definition If a sequence is increasing, non-decreasing, decreasing, or non-
increasing, it is said to be monotonic.

Let’s see some examples of sequences which are monotonic.

Example 1.8.1 The sequence an =
2n − 1

2n
which starts

1
2

,
3
4

,
7
8

,
15
16

, . . . ,
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is increasing. On the other hand, the sequence bn =
n + 1
n

, which starts

2
1

,
3
2

,
4
3

,
5
4

, . . . ,

is decreasing.

1.8.2 Boundedness

Sometimes we can’t say exactly which number a sequence approaches, but we can
at least say that the sequence doesn’t get too big or too small.

Definition A sequence (an) is bounded above if there is some number M so
that for all n, we have an ≤ M . Likewise, a sequence (an) is bounded below if
there is some number M so that for every n, we have an ≥ M .

If a sequence is both bounded above and bounded below, the sequence is
said to be bounded.

If a sequence {an}∞n=0 is increasing or non-decreasing it is bounded below (by a0),
and if it is decreasing or non-increasing it is bounded above (by a0).

Finally, with all this new terminology we can state the most important theorem
of Chapter 1.

Theorem 1.8.2 If the sequence an is bounded and monotonic, then lim
n→∞

an
exists.

In short, bounded monotonic sequences converge—though we can’t necessarily
describe the number to which they converge.

We will not prove this theorem in the textbook.5 Nevertheless, it is not hard to 5 Proving this theorem is, honestly, the purview of
a course in analysis, the theoretical underpinnings
of calculus. That’s not to say it couldn’t be done in
this course, but I intend this to be a “first glance” at
sequences—so much will be left unsaid.

believe: suppose that a sequence is increasing and bounded, so each term is larger
than the one before, yet never larger than some fixed value M . The terms must then
get closer and closer to some value between a0 and M. It certainly need not be M,
since M may be a “too generous” upper bound; the limit will be the smallest number
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that is above6 all of the terms an. Let’s try an example! 6 This concept of the “smallest number above all the
terms” is an incredibly important one; it is the idea of
a least upper bound that underlies the real numbers.Example 1.8.3 All of the terms (2i − 1)/2i are less than 2, and the sequence

is increasing. As we have seen, the limit of the sequence is 1—1 is the smallest
number that is bigger than all the terms in the sequence. Similarly, all of
the terms (n + 1)/n are bigger than 1/2, and the limit is 1—1 is the largest
number that is smaller than the terms of the sequence.

We don’t actually need to know that a sequence is monotonic to apply this
theorem—it is enough to know that the sequence is “eventually” monotonic,7 that is, 7 After all, the limit only depends on what is hap-

pening after some large index, so throwing away the
beginning of a sequence won’t affect its convergence
or its limit.

that at some point it becomes increasing or decreasing. For example, the sequence
10, 9, 8, 15, 3, 21, 4, 3/4, 7/8, 15/16, 31/32, . . . is not increasing, because among
the first few terms it is not. But starting with the term 3/4 it is increasing, so if
the pattern continues and the sequence is bounded, the theorem tells us that the
“tail” 3/4, 7/8, 15/16, 31/32, . . . converges. Since convergence depends only on
what happens as n gets large, adding a few terms at the beginning can’t turn a
convergent sequence into a divergent one.

Example 1.8.4 Show that the sequence (an) given by an = n1/n converges.

You may be worried about my saying that log 3 > 1.
If log were the common (base 10) logarithm, this
would be wrong, but as far as I’m concerned, there
is only one log, the natural log. Since 3 > e, we may
conclude that log 3 > 1.

Solution We might first show that this sequence is decreasing, that is, we
show that for all n,

n1/n > (n + 1)1/(n+1).

http://en.wikipedia.org/wiki/Least-upper-bound_property
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But this isn’t true! Take a look

a1 = 1,

a2 =
√

2 ≈ 1.4142,

a3 =
3√3 ≈ 1.4422,

a4 =
4√4 ≈ 1.4142,

a5 =
5√
5 ≈ 1.3797,

a6 =
6√6 ≈ 1.3480,

a7 =
7√7 ≈ 1.3205,

a8 =
8√8 ≈ 1.2968, and

a9 =
9√9 ≈ 1.2765.

But it does seem that this sequence perhaps is decreasing after the first few
terms. Can we justify this?

Yes! Consider the real function f (x) = x1/x when x ≥ 1. We compute the
derivative—perhaps via “logarithmic differentiation”—to find

f ′(x) =
x1/x (1 − log x)

x2 .

Note that when x ≥ 3, the derivative f ′(x) is negative. Since the function f is
decreasing, we can conclude that the sequence is decreasing—well, at least for
n ≥ 3.

Since all terms of the sequence are positive, the sequence is decreasing and
bounded when n ≥ 3, and so the sequence converges.

As it happens, you could compute the limit in Ex-
ample 1.8.4, but our given solution shows that it
converges even without knowing the limit!

Example 1.8.5 Show that the sequence an =
n!
nn

converges.
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Solution Let’s get an idea of what is going on by computing the first few terms.

a1 = 1, a2 =
1
2

, a3 =
2
9
≈ 0.22222, a4 =

3
32
≈ 0.093750,

a5 =
24
625

≈ 0.038400, a6 =
5

324
≈ 0.015432,

a7 =
720

117649
≈ 0.0061199, a8 =

315
131072

≈ 0.0024033.

The sequence appears to be decreasing. To formally show this, we would need
to show an+1 < an, but we will instead show that

an+1

an
< 1,

which amounts to the same thing. It is helpful trick here to think of the ratio
between subsequent terms, since the factorials end up canceling nicely. In
particular,

an+1

an
=

(n + 1)!
(n + 1)n+1

nn

n!

=
(n + 1)!
n!

nn

(n + 1)n+1

=
n + 1
n + 1

( n

n + 1

)n
=

( n

n + 1

)n
< 1.

Note that the sequence is bounded below, since every term is positive.
Because the sequence is decreasing and bounded below, it converges.

Indeed, Exercise 2 asks you to compute the limit.

These sorts of arguments involving the ratio of subsequent terms will come up
again in a big way in Section 3.1. Stay tuned!
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Exercises for Section 1.8

(1) Compute lim
x→∞

x1/x . à

(2) Use the squeeze theorem to show that lim
n→∞

n!
nn

= 0. à

(3) Determine whether {
√
n + 47 −

√
n}∞n=0 converges or diverges. If it converges, compute

the limit. à

(4) Determine whether
{
n2 + 1
(n + 1)2

}∞
n=0

converges or diverges. If it converges, compute the

limit. à

(5) Determine whether
{

n + 47
√
n2 + 3n

}∞
n=1

converges or diverges. If it converges, compute the

limit. à

(6) Determine whether
{

2n

n!

}∞
n=0

converges or diverges. If it converges, compute the limit.

à



2 Series

We’ve only just scratched the surface of sequences, and already we’ve arrived in
Chapter 2. Series will be the main focus of our attention for the rest of the course. If
that’s the case, then why did we bother with sequences? Because a series is what

you get when you add up the terms of a sequence, in order. So we needed to
talk about sequences to provide the language with which to discuss series.

Suppose (an) is a sequence; then the associated series1 1 The Σ symbol may look like an E, but it is the Greek
letter sigma, and it makes an S sound—just like the
first letter of the word “series.” If you see “GRΣΣK,”
say “grssk.”

∞∑
k=1

ak = a1 + a2 + a3 + a4 + a5 + · · ·

I might be thinking that I feel just fine, but I have woken a terrible beast! What
does that innocuous looking “· · · ” mean? What does it mean to add up infinitely
many numbers? It’s not as if I’ll ever be done with all the adding, so how can I ever
attach a “value” to a series? How can I do infinitely many things, yet live to share
the answer with you?

I can’t.
But I can do a large, but finite, number of things, and then see if I’m getting close

to anything in particular. In other words, I can take a limit.

2.1 Definition of convergence

But a limit. . . of what? From a sequence, we can consider the associated series, and
associated to that series is a yet another sequence—the sequence of partial sums.
Here’s a formal definition which unwinds this tangled web.



40 sequences and series

Definition Suppose (an) is a sequence with associated series
∞∑
k=1

ak . The

sequence of partial sums associated to these objects is the sequence

sn =
n∑

k=1
ak .

Working this out, we have

s1 = a1,

s2 = a1 + a2,

s3 = a1 + a2 + a3,

s4 = a1 + a2 + a3 + a4,

s5 = a1 + a2 + a3 + a4 + a5, and so on.

Instead of adding up the infinite sequence an, which we can’t do, we will instead
look at the sequence of partial sums, and ask whether that sequence of partial sums
converges. And if it converges to L, then we’ll call L the value of the series. This might seem overly complicated, but it solves a

serious problem: we no longer are confronted with
the supertask of adding up infintely many numbers
but living to tell the tale. To take the limit of the
sequence of partial sums is to add up lots—but not
all!—of the terms in the original sequence to see if
we’re staying close to a particular number—the limit.
That particular limiting value is then, by definition,
declared to be the result of adding up all the terms
in the original sequence in order.

That the order matters will be a major theme in
Chapter 4.

Definition Consider the series
∞∑
k=1

ak . This series converges if the sequence

of partial sums sn =
n∑

k=1
ak converges. More precisely, if lim

n→∞
sn = L, we then

write
∞∑
k=1

ak = L

and say, “the series
∞∑
k=1

ak converges to L.”

If the sequence of partial sums diverges, we say that the series diverges.

http://en.wikipedia.org/wiki/Supertask


series 41

Remember, infinity is not a number. So if it happens that lim
n→∞

n∑
k=1

ak = ∞, then

we might write
∞∑
k=1

ak = ∞ but nevertheless we still say that the series diverges. Sometimes, to emphasize that the series involves
adding up infinitely many terms, we will say “infi-
nite series” instead of just “series.”

2.2 Geometric series

Armed with the official definition of convergence in general, we focus in on the specific
example: a sequence of the form an = a0 r

n is called a geometric progression as
we learned back in Subsection 1.3.2. What happens when we add up the terms of a
geometric progression? A geometric series was used by Archimedes—who

lived more than two thousand years ago!—to compute
the area between a parabola and a straight line.
Humans had the first inklings of calculus a very long
time ago.

Definition (Geometric Series) A series of the form

∞∑
k=0

a0 r
k

is called a geometric series.

We can’t simply “add” up the infinitely many terms in the geometric series. What
we can do, instead, is add up the a first handful of terms. Pick a big value for n,
and instead compute

sn =
n∑

k=0
a0 r

k = a0 + a0 r + a0 r
2 + a0 r

3 + · · ·+ a0 r
n .

http://en.wikipedia.org/wiki/The_Quadrature_of_the_Parabola
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This is the nth partial sum. Concretely,

s0 = a0,

s1 = a0 + a0 r,

s2 = a0 + a0 r + a0 r
2,

s3 = a0 + a0 r + a0 r
2 + a0 r

3

...

sn = a0 + a0 r + a0 r
2 + a0 r

3 + · · ·+ a0 r
n .

In our quest to assign a value to the infinite series
∞∑
k=0

a0 r
k , we instead2 consider 2 Replacing the actual “∞” by a limit (that is, a “po-

tential” infinity) shouldn’t seem all that surprising;
we encountered the same trick in Calculus One.

lim
n→∞

sn = lim
n→∞

n∑
k=0

a0 r
k .

We can perform some algebraic manipulations on the partial sum. The manipulation
begins with our multiplying sn by (1 − r) to cause some convenient cancellation,
specifically,

sn(1 − r) = a0 (1 + r + r2 + r3 + · · ·+ rn) (1 − r)

= a0 (1 + r + r2 + r3 + · · ·+ rn) 1 − a0 (1 + r + r2 + r3 + · · ·+ rn−1 + rn) r

= a0 (1 + r + r2 + r3 + · · ·+ rn) − a0 (r + r2 + r3 + · · ·+ rn + rn+1)

= a0 (1 + r + r2 + r3 + · · ·+ rn − r − r2 − r3 − · · · − rn − rn+1)

= a0(1 − rn+1).

Dividing both sides3 by (1 − r) shows 3 Here, we tacitly assume r , 1. But can you see
what happens to the geometric series when r = 1
without going through this argument?

sn = a0 ·
1 − rn+1

1 − r
.

Therefore,
∞∑
k=0

a0 r
k = lim

n→∞
sn = lim

n→∞

(
a0 ·

1 − rn+1

1 − r

)
.
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The limit depends very much on what r is.
Suppose r ≥ 1 or r ≤ −1. In those cases, lim

n→∞
rn+1 does not exist, and likewise

lim
n→∞

sn does not exist. So the series diverges if r ≥ 1 or if r ≤ −1. One quicker way
of saying this is that the series diverges when |r | ≥ 1.

On the other hand, suppose |r | < 1. Then lim
n→∞

rn+1 = 0, and so

lim
n→∞

sn = lim
n→∞

a0
1 − rn+1

1 − r
=

a0

1 − r
.

Thus, when |r | < 1 the geometric series converges to a0/(1 − r). This is important
enough that we’ll summarize it as a theorem.

Theorem 2.2.1 Suppose a0 , 0. Then for a real number r such that |r | < 1,
the geometric series

∞∑
k=0

a0r
k

converges to
a0

1 − r
.

For a real number r where |r | ≥ 1, the aforementioned geometric series
diverges.

Example 2.2.2 When, for example, a0 = 1 and r = 1/2, this means

∞∑
k=0

(1
2

)k
=

1
1 − 1

2
= 2,

which makes sense. Consider the partial sum

sn = 1 +
1
2
+

1
4
+

1
8
+

1
16

+ · · ·+
1
2n

.

This partial sum gets as close to two as you’d like—as long as you are willing
to choose n large enough. And it doesn’t take long to get close to two! For
example, even just n = 6, we get

s6 = 1 +
1
2
+

1
4
+

1
8
+

1
16

+
1
32

+
1
64

=
127
64



44 sequences and series

which is close to two.

1
4

1
16

1
64

1
256

1
1024

1
4096

1
16384

1
65536

1262144

1
2

1
8

1
32

1
128

1
512

1
2048

1
8192

1
32768

1
131072

1524288

Figure 2.1: Visual evidence that
∞∑
n=1

1
2n

= 1. Begin

with a
1
2
× 1 rectangle, and build each subsequent

rectangle by cloning and halving the previous rectan-
gle; all these rectangles fit together to fill up a unit
square.

Example 2.2.3 Consider the series

∞∑
k=1

1
2k

.

This does not quite fit into the preceding framework, because this series starts
with k = 1 instead of k = 0.

Nevertheless, we can work out what happens. The series
∞∑
k=1

1
2k

is just

like series
∞∑
k=0

1
2k

except the former is missing an initial k = 0 term, which

is 1/20 = 1. So each partial sum of the former series is one less than the
corresponding partial sum for the latter series, so the limit is also one less
than the value of the geometric series. In symbols,

∞∑
n=1

1
2n

=

 ∞∑
n=0

1
2n

 − 1 =
1

1 − 1
2
− 1 = 1.

If you don’t find this argument convincing, look at Figure 2.1, which displays

a visual argument that the series
∞∑
k=1

1
2k

converges to one.

2.3 Properties of series

Theorem 1.7.1 presented many properties of sequences. Since the value of a series
is the limit of the sequence of partial sums, properties of limits can be reformulated
into properties of series.

2.3.1 Constant multiple
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Theorem 2.3.1 Suppose
∞∑
k=0

ak is a convergent series, and c is a constant.

Then
∞∑
k=0

c ak converges, and

∞∑
k=0

c ak = c
∞∑
k=0

ak .

Proof If you know just enough algebra to be dangerous, you may remember

that for any real numbers a, b, and c,

c(a + b) = c a + c b.

This is the distributive law for real numbers. By using the distributive law

more than once,

c(a0 + a1 + a2) = c a0 + c a1 + c a2,

or more generally, for some finite n,

c(a0 + a1 + a2 + · · ·+ an) = c a0 + c a1 + c a2 + · · ·+ c an .

So what’s the big deal with proving Theorem ? Can’t we just scream “distributive

law!” and be done with it? After all, Theorem amounts to

c a0 + c a1 + c a2 + · · ·+ c an + · · · = c(a0 + a1 + a2 + · · ·+ an + · · · ).

But hold your horses: you can only apply the distributive law finitely many

times! The distributive law, without some input from calculus, will not succeed

in justifying Theorem .

Let’s see how to handle this formally. By hypothesis,
∞∑
k=0

ak is a convergent

series, meaning its associated sequence of partial sums,

sn =
n∑

k=0
ak ,
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converges. In other words, lim
n→∞

sn exists. Then, by Theorem ,

lim
n→∞

(c sn) = c lim
n→∞

sn .

But c sn is the sequence of partial sums for the series
∞∑
k=0

c ak , because

c sn = c a0 + c a1 + c a2 + · · ·+ c an .

Consequently,
∞∑
k=0

c ak = lim
n→∞

(c sn) = c lim
n→∞

sn ,

which is what we wanted to prove.

That theorem addresses the case of multiplying a convergent series by a constant
c; what about divergence?

Example 2.3.2 Suppose that
∞∑
k=0

ak diverges; does
∞∑
k=0

c ak also diverge?

Solution If c = 0, then
∞∑
k=0

c ak =
∞∑
k=0

0 which does converge, to zero.

On the other hand, provided c , 0, then, yes,
∞∑
k=0

c ak also diverges. How

do we know?

We are working under the hypothesis that
∞∑
k=0

ak diverges. Suppose now, to

the contrary, that
∞∑
k=0

c ak did converge; applying Theorem 2.3.1 (albeit with

ak replaced by c ak and c replaced by (1/c)), the series

∞∑
k=0

(1
c

)
c ak



series 47

converges, but that is ridiculous, since

∞∑
k=0

(1
c

)
c ak =

∞∑
k=0

ak

and the latter, under our hypothesis, diverged. A series cannot both converge

and diverge, so our assumption (that
∞∑
k=0

c ak did converge) must have been

mistaken—it must be that
∞∑
k=0

c ak diverges.

But what about the case where c = 0? In that case, the series converged! Did we
make a mistake? In the argument for divergence, we multiplied by 1/c, which is
something we are not permitted to do when c = 0. We can connect this discussion back to the dis-

cussion of geometric series in Section 2.2. If you

believe that
∞∑
k=0

rk =
1

1 − r
, then by Theorem 2.3.3,

you believe
∞∑
k=0

c rk =
c

1 − r
, which is part of Theo-

rem 2.2.1.

In light of this example, we have actually proved something stronger.

Theorem 2.3.3 Consider the series
∞∑
k=0

ak , and suppose c is a nonzero con-

stant. Then
∞∑
k=0

ak and
∞∑
k=0

c ak share a common fate: either both series

converge, or both series diverge.

Moreover, when
∞∑
k=0

ak converges,

∞∑
k=0

c ak = c ·
∞∑
k=0

ak .

2.3.2 Sum of series

Suppose
∞∑
k=0

ak and
∞∑
k=0

bk are convergent series. What can be said of
∞∑
k=0

(ak + bk)?

Addition is associative4 and commutative5, so for any real numbers a, b, c, 4 To say that addition is “associative” is, intuitively, to
say that how the expression is parenthesized doesn’t
matter; formally, “associativity” means that for any
a, b, and c, we have a + (b+ c) = (a + b) + c.
5 To say that addition is “commutative” is, intuitively,
to say that the order in which the adding is done
doesn’t matter; formally, “commutativity” means that
for a and b, we have a + b = b+ a.
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and d,
(a + b) + (c + d) = (a + c) + (b+ d).

More generally, for real numbers a0, a1, a2, . . . , an and real numbers b0, b1, b2,
. . . , bn,

(a0 +a1 +a2 + · · ·+an)+ (b0 +b1 +b2 + · · ·+bn) = (a0 +b0)+ (a1 +b1)+ (a2 +b2)+ · · ·+(an+bn).

But this finite statement can be beefed up into a statement about series. What we
want to prove is

∞∑
k=0

ak +
∞∑
k=0

bk =
∞∑
k=0

(ak + bk) .

From above, we already know

n∑
k=0

ak +
n∑

k=0
bk =

n∑
k=0

(ak + bk) .

Take the limit of both sides.

lim
n→∞

 n∑
k=0

ak +
n∑

k=0
bk

 = lim
n→∞

n∑
k=0

(ak + bk) .

But the limit of a sum is the sum of the limits6, so 6 I like to call this a chiastic rule, since it has the
rhetorical pattern of a chiasmus. lim

n→∞

n∑
k=0

ak

+  lim
n→∞

n∑
k=0

bk

 = lim
n→∞

n∑
k=0

(ak + bk) .

Those three limits of partial sums can each be replaced by the series, which shows

∞∑
k=0

ak +
∞∑
k=0

bk =
∞∑
k=0

(ak + bk) .

This can be summarized in a theorem.

http://en.wikipedia.org/wiki/Chiasmus
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Theorem 2.3.4 Suppose
∞∑
k=0

ak and
∞∑
k=0

bk are convergent series. Then

∞∑
k=0

(ak + bk) is convergent, and

∞∑
k=0

(ak + bk) =

 ∞∑
k=0

ak

+  ∞∑
k=0

bk

 .

That covers sums of convergent series.

Example 2.3.5 Now suppose that
∞∑
k=0

ak and
∞∑
k=0

bk diverge; does
∞∑
k=0

(ak +bk)

diverge?

Solution Not necessarily. Let ak = 1 and bk = −1, so
∞∑
k=0

ak and
∞∑
k=0

bk

diverge. But

∞∑
k=0

(ak + bk) =
∞∑
k=0

((1) + (−1)) =
∞∑
k=0

0 = 0.

This is not to say that the term-by-term sum of divergent series necessarily

converges, either. It is entirely possible that
∞∑
k=0

(ak + bk) will also diverge. For

istance, if ak = bk = 1, then

∞∑
k=0

(ak + bk) =
∞∑
k=0

(1 + 1) =
∞∑
k=0

2

also diverges. So the term-by-term sum of divergent series might converge or
might diverge, depending on the situation.
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2.4 Telescoping series

For most of this course, we will be happy if we can show that a series converges or
that a series diverges; we will not, usually, be too concerned with finding the value
of a series. Why not? Usually it is just too hard to determine the value; we would if
we could, but since it is often too hard, we don’t bother.

Nevertheless, there is one family of series for which we can calculate the value
with relative ease: the telescoping series. Here is a first example which suggests
what we mean by “telescoping.”

Example 2.4.1 Compute
n∑

k=1

1
k · (k + 1)

.

You might know about a method called partial frac-

tions to rewrite
1

k · (k + 1)
as a combination of

1
k

and
1

k + 1
.

Solution Note that

1
k
−

1
k + 1

=
k + 1

k · (k + 1)
−

k

k · (k + 1)

=
k + 1 − k
k · (k + 1)

=
1

k · (k + 1)

Consequently,

n∑
k=1

1
k · (k + 1)

=
(1
1
−

1
1 + 1

)
+

(1
2
−

1
2 + 1

)
+

(1
3
−

1
3 + 1

)
+ · · ·+

(1
n
−

1
n + 1

)
=

1
1
+

(
−

1
1 + 1

+
1
2

)
+

(
−

1
2 + 1

+
1
3

)
+ · · ·+

(
−

1
(n − 1) + 1

+
1
n

)
−

1
n + 1

=
1
1
−

1
n + 1

since most of these terms end up canceling.

In general, we say that a series telescopes if, after some simplification, there
is a formula for the sequence of partial sums with a fixed number of terms. The
name suggests the way the cancellation happens: just as the nesting rings in an
expandable spyglass fit together, so too do the neighboring terms in a telescoping
series fit together and collapse.

http://en.wikipedia.org/wiki/Partial_fraction_decomposition
http://en.wikipedia.org/wiki/Partial_fraction_decomposition
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Armed with a formula for the sequence of partial sums, we can attack the
corresponding infinite series.

Example 2.4.2 Compute
∞∑
k=1

1
k · (k + 1)

.

Solution We just computed that

n∑
k=1

1
k · (k + 1)

= 1 −
1

n + 1
.

Rewriting the infinite series as the limit of the sequence of partial sums yields

∞∑
k=1

1
k · (k + 1)

= lim
n→∞

n∑
k=1

1
k · (k + 1)

= lim
n→∞

(
1 −

1
n + 1

)
= lim

n→∞
1 − lim

n→∞

1
n + 1

= 1 − 0 = 1.

So the value of this series is 1.

2.5 A test for divergence

Usually, the sequence of partial sums sn = a0 + a1 + · · ·+ an is harder to under-
stand and analyze than the sequence of terms ak . It would be helpful if we could say
something about the complicated sequence sn by studying the easier-to-understand
sequence ak .

Specifically, if the sequence sn converges, what can be said about the sequence
ak? If adding up more and more terms from the sequence ak gets closer and closer
to some number, then the size of the terms of ak had better be getting very small.
Let’s make this precise.
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Theorem 2.5.1 If
∞∑
k=0

ak converges then lim
n→∞

an = 0.

Proof Intuitively, this should seem reasonable: after all, if the terms in the

sequence an were getting very large (that is, not converging to zero), then adding

up those very large numbers would prevent the series
∞∑
k=0

ak from converging.

We can put this intuitive thinking on a firm foundation. Say
∞∑
k=0

ak con-

verges to L, meaning lim
n→∞

sn = L. But then also lim
n→∞

sn−1 = L, because that

sequence amounts to saying the same thing, but with the terms renumbered. By

Theorem ??,

lim
n→∞

(sn − sn−1) = lim
n→∞

sn − lim
n→∞

sn−1 = L − L = 0.

Replacing sn with a0 + · · ·+ an , we get

sn − sn−1 = (a0 + a1 + a2 + · · ·+ an) − (a0 + a1 + a2 + · · ·+ an−1) = an ,

and therefore, lim
n→∞

an = 0.

The contrapositive of Theorem 2.5.1 can be used as a divergence test.

Theorem 2.5.2 Consider the series
∞∑
k=0

ak . If the limit lim
n→∞

an does not exist

or has a value other than zero, then the series diverges.

We’ll usually call this theorem the “nth term test.”

Warning The converse of Theorem 2.5.1 is not true: even if lim
n→∞

an = 0, the
series could diverge.
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This is a very common mistake: you might be tempted to show that a series
converges by showing lim

n→∞
an = 0, but that doesn’t work. The nth term test

either says “diverges!” or says nothing at all. It is not possible to show that
anything converges by using the nth term test.

For an example, see Section 2.6.

One analogy that can be helpful is think about weather: whenever it is raining, it
is cloudy. Yet it is possible for there to be clouds, even on a rainless day. 7 7 We first introduced this idea on Page 24.

Likewise, whenever the series
∞∑
k=0

ak converges (“it is raining”), the sequence

ak converges to zero (“it is cloudy”). If it isn’t cloudy, then we can be sure it isn’t
raining—and this is the statement of Theorem 2.5.2. Let’s use this “divergence test”
to show that a particular series diverges.

Example 2.5.3 Show that
∞∑
n=1

n

n + 1
diverges.

Solution We apply the nth term test: all we need to do is to compute the limit

lim
n→∞

n

n + 1
= 1 , 0.

Since the limit exists but is not zero (i.e., “it is not cloudy”), the series must
diverge (“it can’t be raining.”).

Looking at the first few terms perhaps makes it clear that the series has no
chance of converging:

1
2
+

2
3
+

3
4
+

4
5
+ · · ·

will just get larger and larger; indeed, after a bit longer the series starts to
look very much like · · ·+ 1 + 1 + 1 + 1 + · · · , and if we add up many numbers
which are very close to one, then we can make the sum as large as we desire.
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2.6 Harmonic series

The series
∞∑
n=1

1
n

has a special name.

Definition The series

∞∑
n=1

1
n
=

1
1
+

1
2
+

1
3
+

1
4
+ · · ·

is called the harmonic series.

The main question for this section—indeed, the question which should always be
our first question anytime we see an unknown series—is the following question:

Does the harmonic series converge. . . or diverge?

How can we begin to explore this question?

2.6.1 The limit of the terms
When confronted with the question of whether a
series diverges or converges, the first thing to check
is the limit of the terms—if that limit doesn’t exist,
or does exist but equals a number other than zero,
then the series diverges.

In general, the easiest way to prove that a series diverges is to apply the nth term
test from Theorem 2.5.2. What does the nth term test tell us for the harmonic series?
We calculate

lim
n→∞

1
n
= 0,

so the nth term test is silent; since the limit of the terms of the series exists and is
equal to zero, the nth term test does not tell us any information.

The harmonic series passed the first gauntlet—but that does not mean the
harmonic series will survive the whole game. All we know is that the harmonic does
doesn’t diverge for the most obvious reason, but whether it diverges or converges is
yet to be determined.

2.6.2 Numerical evidence

If you have the fortitude8 to add up the first hundred terms, you will find that 8 lacking fortitude, software will suffice
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100∑
n=1

1
n
=

1
1
+

1
2
+ · · ·+

1
100

=
14466636279520351160221518043104131447711
2788815009188499086581352357412492142272

≈ 5.19.

If we add up the first thousand terms, we will find that

1000∑
n=1

1
n
=

1
1
+

1
2
+ · · ·+

1
1000

≈ 7.49.

If we add up the first ten thousand terms, we will find that

10000∑
n=1

1
n
=

1
1
+

1
2
+ · · ·+

1
10000

≈ 9.79

The partial sums are getting bigger, but not very quickly. Maybe the series converges.
Maybe it converges to. . . about ten?

2.6.3 An analytic argument

That numeric evidence might have made us think otherwise, but the harmonic

series diverges.

But in fact the partial sums do get arbitrarily large; they just get big very, very
slowly. Consider the following:

1 +
1
2
+

1
3
+

1
4
> 1 +

1
2
+

1
4
+

1
4
= 1 +

1
2
+

1
2

1 +
1
2
+

1
3
+

1
4
+

1
5
+

1
6
+

1
7
+

1
8
> 1 +

1
2
+

1
4
+

1
4
+

1
8
+

1
8
+

1
8
+

1
8
= 1 +

1
2
+

1
2
+

1
2

1 +
1
2
+

1
3
+ · · ·+

1
16

> 1 +
1
2
+

1
4
+

1
4
+

1
8
+ · · ·+

1
8
+

1
16

+ · · ·+
1
16

= 1 +
1
2
+

1
2
+

1
2
+

1
2

and so on. By swallowing up more and more terms we can always manage to add
at least another 1/2 to the sum, and by adding enough of these we can make the
partial sums as big as we like. In fact, it’s not hard to see from this pattern that

1 +
1
2
+

1
3
+ · · ·+

1
2n

> 1 +
n

2
,
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so to make sure the sum is over 100, for example, we’d add up terms until we get to
around 1/2198, that is, about 4 · 1059 terms.

2.7 Comparison test

A bounded, monotonic sequence necessarily converges (Theorem 1.8.2). How does
this fact about sequences relate to series? When is the sequence of partial sums
monotonic? If the terms of a series are non-negative, then the associated sequence
of partial sums is non-decreasing.

Corollary 2.7.1 Consider the series
∞∑
k=0

ak . Assume the terms ak are non-

negative. If the sequence of partial sums sn = a0 + · · ·+ an is bounded, then
the series converges.

So we can show that a series of positive terms converges, provided we can bound
the sequence of partial sums.

2.7.1 Statement of the Comparison Test

But how can we manage to do that? One way to ensure that the sequence of partial
sums is bounded is by comparing the series to another series. Consider two series

∞∑
k=0

ak and
∞∑
k=0

bk .

Suppose, for all k, that bk ≥ ak ≥ 0. Then

a0 + a1 + · · ·+ an ≤ b0 + b1 + · · ·+ bn .

Suppose that
∞∑
k=0

bk converges to L. Then

a0 + a1 + · · ·+ an ≤ b0 + b1 + · · ·+ bn ≤ L,
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so the sequence of partial sums sn = a0 + a1 + · · ·+ an is bounded. But we just won

the game: each term ak is nonnegative, so the sequence of partial sums sn =
n∑

k=0
ak

is increasing. Theorem 1.8.2 guarantees that the sequence (sn) converges.
Let’s summarize what just happened: if a series with positive terms is, termwise,

less than a convergent series, it converges. We have just proved half of the following
theorem.

Theorem 2.7.2 Suppose that an and bn are non-negative for all n and that,
for some N , whenever n ≥ N , we have an ≤ bn.

If
∞∑
n=0

bn converges, so does
∞∑
n=0

an.

If
∞∑
n=0

an diverges, so does
∞∑
n=0

bn.

This is usually called the Comparison Test; we might summarize it like this:

• A non-negative series, overestimated by a convergent series, converges.

• A non-negative series, underestimated by a divergent series, diverges.

Warning Being less than a divergent series does not help: the comparison test
is silent in that case.

Similarly, being larger than a convergent series does not help. The Compari-
son Test only says something when a series (with non-negative terms!) is less
than a convergent series, or greater than a divergent series.

2.7.2 Applications of the Comparison Test

Like the nth term test (Theorem 2.5.2), we can use the Comparison Test (Theo-
rem 2.7.2) to show that a series diverges.
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Example 2.7.3 Does the series
∞∑
n=2

logn
n

converge?

Solution Our first inclination might be to apply the nth term test, but in this
case,

lim
n→∞

logn
n

= 0,

so the nth term test is silent in this case. As far as we know at this point, the
series may diverge or converge.

Instead, we’ll try the Comparison Test. Set an =
1
n

and bn =
logn
n

. Note
that whenever n ≥ 3, we have

0 ≤ an ≤ bn ,

but the series
∞∑
n=3

1
n

diverges, and so by the Comparison Test, the given series

(which is even bigger!) must likewise diverge.

Recall that the nth term test cannot be used to prove that a series converges; if
the nth term test does not answer “diverges!” then the test is silent. In wonderful
contrast, the Comparison Test can be used to show that a series converges.

Example 2.7.4 Does the series
∞∑
n=1

sin2 n

2n
converge?

Solution Yes. Set

an =
sin2 n

2n
and bn =

1
2n

Note that 0 ≤ an ≤ bn . But the series
∞∑
n=1

bn converges, since it is a geometric

series with common ratio 1/2, as in Example 2.2.2. Therefore, the series
∞∑
n=1

an converges by the comparison test.
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2.7.3 Cauchy Condensation Test
If you have already seen some convergence tests
before—perhaps you have already been through Cal-
culus Two!—you might be wondering why “conden-
sation” is making an appearance. It is perhaps less
popular than other tests, but I like it. Pedagogically,
it is nice to see that the “trick” in the harmonic series
can be generalized and applied to lots of other series.
In particular, condensation permits the study of p-
series without going through the usual route of the
Integral Test.

Remember in Section 2.6 when we considered the harmonic series? We showed

that it diverged by comparing it with the divergent series
∞∑
n=1

1
2

, but we couldn’t

make that comparison right away—first we had to group together the terms in a
somewhat complicated seeming way.

We can generalize that “grouping together” trick; this is called the Cauchy
Condensation Test.

Theorem 2.7.5 Suppose (an) is a non-increasing sequence of positive num-

bers. The series
∞∑
n=1

an converges if and only if the series
∞∑
n=0

(2na2n ) converges.

The series
∞∑
n=0

(2na2n ) is often called the condensed series associated to the

series
∞∑
n=1

an.

Proof Let’s suppose that
∞∑
n=0

(2na2n ) converges; the goal then is to show that

∞∑
n=1

an also converges.

Since the sequence (an) is decreasing, we have that

a2 + a3 ≤ a2 + a2

a4 + a5 + a6 + a7 ≤ a4 + a4 + a4 + a4

a8 + · · ·+ a15 ≤ 8a8

...

a2n + · · ·+ a2n+1−1 ≤ 2n a2n .
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Therefore,
2k−1∑
n=1

an ≤
k−1∑
n=0

2n a2n .

As a result, the sequence of partial sums sk =
k∑

n=1
an is bounded above by

∞∑
n=0

2n a2n . Moreover, the sequence of partial sums (sk) is increasing. Therefore,

by the Monotone Convergence Theorem, the series (sk) converges.

On the other hand, suppose that
∞∑
n=1

an converges; let’s show that
∞∑
n=0

(2na2n )

also converges. Once we have done so, we will have shown that
∞∑
n=1

an converges

if and only if
∞∑
n=0

(2na2n ) converges.

Since the sequence (an) is decreasing, we have that

a1 + a2 < a1 + a1

a2 + 3a4 < a2 + a2 + a3 + a3

a4 + 7a8 < a4 + a4 + a5 + a5 + a6 + a6 + a7 + a7

a8 + 15a16 < 2(a8 + · · ·+ a15)

...

a2n + (2n+1 − 1) a2n+1 < 2(a2n + · · ·+ a2n+1−1).

So the sequence of partial sums for the series
k∑

n=0
(2na2n ) are bounded above by

2 ·
∞∑
n=1

an . Moreover, that sequence of partial sums is increasing, and therefore,

by the Monotone Convergence Theorem, the series
∞∑
n=0

(2na2n ) converges—which

is what we wanted to show.
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What we’ve shown is a bit stronger than simply that the original series and the
condensed series share the same fate—converging or diverging together. In fact, we
have an estimate on the value of the original series, in terms of the value of the
condensed series. We have shown that

∞∑
n=1

an ≤
k∑

n=0
(2na2n ) ≤ 2 ·

∞∑
n=1

an .

2.7.4 Examples of condensation

Example 2.7.6 Does the series
∞∑
n=1

1
n2 converge?

This is not a geometric series: we already know that
∞∑
n=1

1
2n

converges, but this

is asking about something very different, namely
∞∑
n=1

1
n2 .

Solution To get some intuition for what is going on, let’s do some numerical
calculations.

10∑
n=1

1
n2 =

1
12 +

1
22 +

1
32 + · · ·+

1
102

=
1968329
1270080

≈ 1.5498,

or going out a bit farther,

100∑
n=1

1
n2 =

1
12 + · · ·+

1
1002 ≈ 1.6350 and

1000∑
n=1

1
n2 =

1
12 + · · ·+

1
10002 ≈ 1.6439.



62 sequences and series

From this numerical evidence, it certainly looks like this series converges. And
indeed, it does—quite surprisingly,

∞∑
n=1

1
n2 =

π2

6
.

This is the so-called Basel problem.
We do not yet have the tools necessarily to show that the value of the series

is π2/6, but do we have the tools needed to show that the series converges.

By condensation, it suffices to show that
∞∑
n=1

2n

(2n)2 converges. But

∞∑
n=1

2n

(2n)2 =
∞∑
n=1

1
(2n)

= 1,

and since the “condensed” series converges, so too must the original series
converge.

Example 2.7.7 Does
∞∑
n=2

| sinn|
n2 converge?

Solution We can’t apply Cauchy condensation here, because the terms of this
series are not decreasing. But we can apply the Comparison Test. Moments

ago, we saw that
∞∑
n=1

1
n2 converges, and

| sinn|
n2 ≤

1
n2 ,

because | sinn| ≤ 1. The partial sums are non-decreasing and bounded above

by
∞∑
n=1

1/n2 = L, so the series converges.

http://en.wikipedia.org/wiki/Basel_problem
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2.7.5 Convergence of p-series

Let us consider the series
∞∑
n=1

1
np

. Such a series is called a p-series. Does a p-series

converge? Diverge? It depends on p. If we think of this as a function of p, then we have
the Riemann zeta function, that is,

ζ (p) =
∞∑
n=1

1
np

.

The Riemann zeta function is quite important: it
plays a key role in number theory via the Riemann
hypothesis and also has applications in physics.
Something that connects the physical world to num-
ber theory must be pretty incredible.

Example 2.7.8 Let p ≤ 1. Does the series
∞∑
n=1

1
np

converge?

Solution When p = 1, this series is the harmonic series we already proved to
diverge in Section 2.6.

But more generally, the series
∞∑
n=1

1
np

diverges whenever p ≤ 1. We will

show this by comparing to a harmonic series. Since p ≤ 1, then np ≤ n, and so

1
np
≥

1
n

.

But the harmonic series
∞∑
n=1

1
n

diverges, and so by comparison, the series

∞∑
n=1

1
np

diverges.

Example 2.7.9 Let p > 1. Does the series
∞∑
n=1

1
np

converge?

Solution It converges. For this, we use Cauchy condensation: consider the
“condensed” series

∞∑
n=1

2n ·
1

(2n)p
.

But this series simplifies to

∞∑
n=1

2n ·
1

(2n)p
=

∞∑
n=1

1
(2p−1)n

,

http://en.wikipedia.org/wiki/Riemann_hypothesis
http://en.wikipedia.org/wiki/Riemann_hypothesis
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which converges.
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Exercises for Section 2.7

(1) Explain why
∞∑
n=1

n2

2n2 + 1
diverges. à

(2) Explain why
∞∑
n=1

5
21/n + 14

diverges. à

(3) Explain why
∞∑
n=1

3
n

diverges. à

(4) Compute
∞∑
n=0

4
(−3)n

−
3
3n

. à

(5) Compute
∞∑
n=0

3
2n

+
4
5n

. à

(6) Compute
∞∑
n=0

4n+1

5n
. à

(7) Compute
∞∑
n=0

3n+1

7n+1 . à

(8) Compute
∞∑
n=1

(3
5

)n
. à

(9) Compute
∞∑
n=1

3n

5n+1 . à





3 Convergence tests

It is generally quite difficult—indeed, often impossible—to determine the value of a
series exactly. Even if we can’t compute the value of a series, in many cases it is
possible to determine whether or not the series converges. We will spend most of
our time on this problem.

3.1 Ratio tests

Does the series
∞∑
n=0

n5

5n
converge? It is possible, but a bit unpleasant, to approach

this with the comparison test. Mathematics is more than just about getting an-
swers; a goal of mathematics is not only to find
truth, but to package the resulting “truth” in a for-
mat that permits another human being to under-
stand the reasons for its being true. Arguments like
this—which are perfectly convincing but seem en-
tirely unmotivated—are, arguably, missing the point.
What has been gained if we find something is true but
the reason for its being true remains inscrutable?

Example 3.1.1 The series
∞∑
n=0

n5

5n
converges.

This idea—that the first handful of terms do not
affect convergence at all—will be discussed formally
in Section 5.1.

Solution As long as n ≥ 23, we have 2n ≥ n5. Therefore, as long as n ≥ 23,
we have

n5

5n
≤

2n

5n
=

(2
5

)n
But the geometric series

∞∑
n=23

(2
5

)n
converges, since the ratio between subse-

quent terms is less than one. So by comparison, the smaller series

∞∑
n=23

n5

5n
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must also converge. The first handful of terms when n < 23 doesn’t affect
convergence at all, so we are justified to conclude that the original series
∞∑
n=0

n5

5n
converges.

That worked—but it invoked an unmotivated fact: how do I know that 2n ≥ n5

whenever n ≥ 23? Invoking that fact seems a bit random—yes, yes, a proof, but
perhaps not a proof that conveys exactly what is going on. It is a valid argument,
but missing some motivation.

3.1.1 Theory

Instead, consider what happens as we move from one term to the next term in this
series, that is, consider two neighboring terms

· · ·+
n5

5n
+

(n + 1)5

5n+1 + · · · .

The denominator goes up by a factor of 5, 5n+1 = 5 · 5n , but the numerator goes up
by much less: (n + 1)5 = n5 + 5n4 + 10n3 + 10n2 + 5n + 1, which is much less
than 5n5 when n is large, because 5n4 is much less than n5. (This sort of thinking
is why it was worth comparing n5 to an exponential 2n for n large.)

So we might guess that in the long run—when n is very large—it begins to look as
if each term is about 1/5 of the previous term. We have seen series that behave
like this, namely the geometric series

∞∑
n=0

1
5n

=
5
4

.

We are beginning to see why it made sense to compare the given series to a geoemtric
series as in the initially very unmotivated argument above.

But we can do better! Instead of an ad hoc argument which compared n5 to 2n,
we can try to make rigorous the idea that each term is “eventually” about a fifth as
big as the previous term. The key is to notice that

lim
n→∞

an+1

an
= lim

n→∞

(n + 1)5

5n+1
5n

n5 = lim
n→∞

(n + 1)5

n5
1
5
= 1 ·

1
5
=

1
5

.
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This is a more formal version of what we noticed about the ratio of subsequent
terms: in the long run, each term is one fifth of the previous term. Pick some

number just slightly bigger than
1
5

; let’s call that number
1
5
+ ε. The symbol ε is the Greek letter epsilon, and, con-

ventionally, denotes a small but positive number.Because
lim
n→∞

an+1

an
=

1
5

,

then by choosing n big enough, say n ≥ N for some N , we can guarantee that
an+1

an

is as close as we’d like to
1
5

, say within ε of
1
5

. More succinctly, there must be some
N so that whenever n ≥ N , we have

an+1

an
<

1
5
+ ε

Multiplying both sides by an, we find whenever n ≥ N that

an+1 <
(1
5
+ ε

)
an .

We can say the same thing when n is replaced by N + 1, meaning

aN+2 <
(1
5
+ ε

)
aN+1,

which together with the previous statement when n is N implies

aN+2 <
(1
5
+ ε

)2
aN .

And we can repeat this again! Since

aN+3 <
(1
5
+ ε

)
aN+2,

we also learn that

aN+3 <
(1
5
+ ε

)3
aN ,

or in general,

aN+k <
(1
5
+ ε

)k
aN .

This is setting up a comparison. The geometric series

∞∑
k=0

(1
5
+ ε

)k
aN =

 ∞∑
k=0

(1
5
+ ε

)kaN
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converges as long as ε had been chosen so small that
1
5
+ ε < 1. But if that series

converges, then the series

∞∑
k=0

aN+k = aN + aN+1 + aN+2 + · · ·

also converges, because each term of that series is smaller than the corresponding
term of the convergent geometric series. But if that series converges, then

∞∑
k=0

ak = a0 + a1 + a2 + · · ·

converges since we’ve just added the number a0 + a1 + · · ·+ aN−1 to the convergent

series
∞∑
k=0

aN+k .

Under what circumstances could we do this? What was crucial was that the limit
of an+1/an , say L, was less than 1 so that we could pick a value ε so that L + ε < 1
and then compare to the convergent series

∞∑
k=0

(L + ε)k · aN .

That’s really all that is required to make the argument work. We also made use of
the fact that the terms of the series were positive. Let’s summarize the situation In general, we can consider instead the absolute

values of the terms, and end up testing for absolute
convergence. We’ll discuss this topic in Section 4.1.

when this works.

Theorem 3.1.2 (The Ratio Test) Consider the series
∞∑
n=0

an where each term

an is positive. Suppose that

lim
n→∞

an+1

an
= L.

If L < 1 the series
∞∑
n=0

an converges. If L > 1 the series diverges. If L = 1 this

test is inconclusive.
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Proof Example 3.1.1 essentially proves the first part of this, if we simply replace

1/5 by L and 1/2 by r. So when L < 1, the series converges.

Let’s consider the other situation. Suppose that L > 1, and pick r so that

1 < r < L. Then for n ≥ N , for some N ,

|an+1|

|an |
> r and |an+1| > r |an |.

This implies that |aN+k | > r
k |aN |, but since r > 1 this means that lim

k→∞
|aN+k | , 0,

which means also that lim
n→∞

an , 0. By the divergence test, the series diverges.

Finally, when L = 1, the test truly is inconclusive—not because we aren’t

clever enough, but because there are both convergent and divergent series with

L = 1. For example, the p-series
∞∑
n=1

1/n2 converges, and the harmonic series

∞∑
n=1

1/n diverges—but in both cases, L = 1.

3.1.2 Practice

The ratio test is particularly useful for series involving the factorial function. “It works in practice—but does it work in theory?”
The ratio test is awfully useful in practice, but I
think the theory behind it—that we’re taking a limit
of the ratio between neighboring terms in order to
compare with a geometric series—is quite lovely.

Example 3.1.3 Does the series

∞∑
n=0

5n/n!

converge or diverge?

Remember our convention that 0! = 1. Despite
appearances, we are not dividing by zero.
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Solution Let’s name the terms an = 5n/n! so we are considering
∞∑
n=0

an. To

apply the ratio test, we consider

lim
n→∞

an+1

an
= lim

n→∞

5n+1

(n + 1)!
n!
5n

= lim
n→∞

5n+1

5n
n!

(n + 1)!

= lim
n→∞

5
1

(n + 1)
= 0.

Since 0 < 1, the series converges by the ratio test.
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Exercises for Section 3.1

(1) Compute lim
n→∞

|an+1/an | for the series
∞∑
n=1

1
n2 . à

(2) Compute lim
n→∞

|an+1/an | for the series
∞∑
n=1

1
n

. à

Determine whether each of the following series converges or diverges.

(3)
∞∑
n=0

(−1)n
3n

5n à

(4)
∞∑
n=1

n!
nn à

(5)
∞∑
n=1

n5

nn à

(6)
∞∑
n=1

(n!)2

nn à
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3.2 Integral test

If all of the terms an in a series are non-negative, then clearly the sequence of partial
sums sn is non-decreasing. This means that if we can show that the sequence
of partial sums is bounded, the series must converge. We know that if the series
converges, the terms an approach zero, but this does not mean that an ≥ an+1 for
every n. Many useful and interesting series do have this property, however, and
they are among the easiest to understand. Let’s look at an example.

3.2.1 An example

Example 3.2.1 Show that
∞∑
n=1

1
n2 converges.

1 2 3 4 5

0.2

0.4

0.6

0.8

1

f (x) = 1/x2

a1

a2

a3
a4 a5

x and n

y

Figure 3.1: Plot of f (x) = 1/x2 alongside boxes
representing an = 1/n2.

Solution We have actually already seen this very series—it appeared in Exam-
ple 2.7.6, where we attacked this series via condensation. Here, we consider a
different approach, namely integration.

The terms 1/n2 are positive and decreasing, and since lim
x→∞

1/x2 = 0, the

terms 1/n2 approach zero. We seek an upper bound for all the partial sums,
that is, we want to find a number N so that sn ≤ N for every n. The upper
bound is provided courtesy of integration.

Figure 3.1 shows the graph of y = 1/x2 together with some rectangles that
lie completely below the curve and that all have base length one. Because the
heights of the rectangles are determined by the height of the curve, the areas
of the rectangles are 1/12, 1/22, 1/32, and so on—in other words, exactly the
terms of the series. The partial sum sn is simply the sum of the areas of the
first n rectangles. Because the rectangles all lie between the curve and the
x-axis, any sum of rectangle areas is less than the corresponding area under
the curve, and so of course any sum of rectangle areas is less than the area
under the entire curve, that is, all the way to infinity. There is a bit of trouble
at the left end, where there is an asymptote, but we can work around that
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easily. Here it is:

sn =
1
12 +

1
22 +

1
32 + · · ·+

1
n2 < 1+

∫ n

1

1
x2 dx < 1+

∫ ∞

1

1
x2 dx = 1+ 1 = 2,

recalling how to compute this improper integral. Since the sequence of partial
sums sn is increasing and bounded above by 2, we know that lim

n→∞
sn = L < 2,

and so the series converges to some number less than 2.

In fact, it is possible, though difficult, to show that
∞∑
n=1

1
n2 = π2/6.

3.2.2 Harmonic series

We already know that
∑

1/n diverges. What goes wrong if we try to apply this
technique to it? We find

sn =
1
1
+

1
2
+

1
3
+ · · ·+

1
n
< 1 +

∫ n

1

1
x
dx < 1 +

∫ ∞

1

1
x
dx

but this amounts to saying nothing, because the improper integral
∫ ∞

1

1
x
dx does

not converge, and claiming that sn is bounded by something divergent is to make
no claim at all: every real number is less than infinity! In other words, this does not

prove that
∑

1/n diverges; it is just that this particular calculation fails to prove
that it converges. A slight modification, however, allows us to prove in a second way
that

∑
1/n diverges.

Example 3.2.2 Consider a slightly altered version of Figure 3.1, shown in
Figure 3.2. Explain how to use the figure to see that the harmonic series
diverges.

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1

1.2
f (x) = 1/x

a1

a2

a3
a4

a5

x and n

y

Figure 3.2: Plot of f (x) = 1/x alongside boxes
representing an = 1/n.

Solution The rectangles this time are above the curve, that is, each rectangle
completely contains the corresponding area under the curve. This means that

sn =
1
1
+

1
2
+

1
3
+ · · ·+

1
n
>

∫ n+1

1

1
x
dx = ln x

∣∣∣∣∣n+1

1
= ln(n + 1).
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As n gets bigger, ln(n + 1) goes to infinity, so the sequence of partial sums sn
must also go to infinity, so the harmonic series diverges.

3.2.3 Statement of integral test

The important fact that clinches this example is that

lim
n→∞

∫ n+1

1

1
x
dx = ∞,

which we can rewrite as ∫ ∞

1

1
x
dx = ∞.

So these two examples taken together indicate that we can prove that a series
converges or prove that it diverges with a single calculation of an improper integral.
This is known as the integral test, which we state as a theorem.

Theorem 3.2.3 (Integral test) Suppose that f (x) > 0 and is decreasing on
the infinite interval [k,∞) (for some k ≥ 1) and that an = f (n). Then the series
∞∑
n=k

an converges if and only if the improper integral
∫ ∞

k
f (x) dx converges.

3.2.4 p-series

The two examples we have seen are examples of p-series, which we first encountered

in Subsection 2.7.5. Recall that a p-series is any series of the form
∞∑
n=1

1/np.

Theorem 3.2.4 A p-series converges if and only if p > 1.

We already proved this theorem using condensation in Example 2.7.8 and
Example 2.7.9. Nevertheless, we provide a second proof, using the integral test.
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Proof We use the integral test; the case p = 1 is that of the harmonic series,

which we know diverges, so without loss of generality, we may assume that

p , 1. If p ≤ 0, lim
n→∞

1/np , 0, so the series diverges by Theorem 2.5.2. So we

may also assume that p > 0.

Then we compute∫ ∞

1

1
xp
dx = lim

N→∞

x1−p

1 − p

∣∣∣∣∣∣N
1
= lim

N→∞

N1−p

1 − p
−

1
1 − p

.

If p > 1 then 1−p < 0 and lim
N→∞

N1−p = 0, so the integral converges. If 0 < p < 1

then 1 − p > 0 and lim
N→∞

N1−p = ∞, so the integral diverges.

Example 3.2.5 Show that
∞∑
n=1

1
n3 converges.

Solution We could of course use the integral test, but now that we have the
theorem we may simply note that this is a p-series with p = 3 > 1.

Example 3.2.6 Show that
∞∑
n=1

5
n4 converges.

Solution We know that if
∞∑
n=1

1/n4 converges then
∞∑
n=1

5/n4 also converges,

by Theorem 2.3.1. Since
∞∑
n=1

1/n4 is a convergent p-series,
∞∑
n=1

5/n4 converges

also.

Example 3.2.7 Show that
∞∑
n=1

5
√
n

diverges.
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Solution This also follows from Theorem 2.3.4. Since
∞∑
n=1

1
√
n

is a p-series

with p = 1/2 < 1, it diverges, and so does
∞∑
n=1

5
√
n

.

3.2.5 Integrating for approximations

Since it is typically difficult to compute the value of a series exactly, a good approx-
imation is frequently required. In a real sense, a good approximation is only as
good as we know it is, that is, while an approximation may in fact be good, it is
only valuable in practice if we can guarantee its accuracy to some degree1. This 1 After all, π ≈ 17 just with very bad error bounds.

It is better to make a statement like |π − 17| < 14,
which is not only saying that π is “close” to 17, but is
quantifying exactly how close (within 14—so perhaps
not all that close).

guarantee is usually easy to come by for series with decreasing positive terms.

Example 3.2.8 Approximate
∞∑
n=1

1/n2 to two decimal places.

It turns out that
∞∑
n=1

1
n2 =

π2

6
, so your approxima-

tion of this series will also—in a roundabout way—
yield an approximate value for π—and one which will
be better than 17.

Solution Referring to Figure 3.1, if we approximate the sum by
N∑
n=1

1/n2,

the error we make is the total area of the remaining rectangles, all of which
lie under the curve 1/x2 from x = N out to infinity. So we know the true
value of the series is larger than the approximation, and no bigger than the
approximation plus the area under the curve from N to infinity. Roughly, then,
we need to find N so that ∫ ∞

N

1
x2 dx < 1/100.

We can compute the integral: ∫ ∞

N

1
x2 dx =

1
N

,

so N = 100 is a good starting point. Adding up the first 100 terms gives approx-
imately 1.634983900, and that plus 1/100 is 1.644983900, so approximating
the series by the value halfway between these will be at most 1/200 = 0.005
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in error. The midpoint is 1.639983900, but while this is correct to ±0.005, we
can’t tell if the correct two-decimal approximation is 1.63 or 1.64. We need to
make N big enough to reduce the guaranteed error, perhaps to around 0.004 to
be safe, so we would need 1/N ≈ 0.008, or N = 125. Now the sum of the first
125 terms is approximately 1.636965982, and that plus 0.008 is 1.644965982
and the point halfway between them is 1.640965982. The true value is then
1.640965982 ± 0.004, and all numbers in this range round to 1.64, so 1.64 is
correct to two decimal places.

Since
∞∑
n=1

1
n2 =

π2

6
, our estimate yields

1.63 <
π2

6
< 1.65,

and so
9.78 < π2 < 9.90.

which means that
3.127 < π < 3.147,

which is better than π ≈ 3. And we have explicit bounds on the error.
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Exercises for Section 3.2

Determine whether each series converges or diverges.

(1)
∞∑
n=1

1
nπ/4 à

(2)
∞∑
n=1

n

n2 + 1 à

(3)
∞∑
n=1

lnn
n2 à

(4)
∞∑
n=1

1
n2 + 1 à

(5)
∞∑
n=1

1
en à

(6)
∞∑
n=1

n

en à

(7)
∞∑
n=2

1
n lnn à

(8)
∞∑
n=2

1
n(lnn)2 à

(9) Find an N so that
∞∑
n=1

1
n4 is between

N∑
n=1

1
n4 and

N∑
n=1

1
n4 + 0.005. à

(10) Find an N so that
∞∑
n=0

1
en

is between
N∑
n=0

1
en

and
N∑
n=0

1
en

+ 10−4. à

(11) Find an N so that
∞∑
n=1

lnn
n2 is between

N∑
n=1

lnn
n2 and

N∑
n=1

lnn
n2 + 0.005. à

(12) Find an N so that
∞∑
n=2

1
n(lnn)2 is between

N∑
n=2

1
n(lnn)2 and

N∑
n=2

1
n(lnn)2 + 0.005. à
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3.3 More comparisons

Armed with the ratio test and the integral test, it can be tempting to apply them

frequently. But when faced with a new series
∞∑
n=1

an, what should we do? First,

consider lim
n→∞

an and if that limit is nonzero, then by Theorem 2.5.2 the series
diverges. If the series passes that first test, then it is worth considering other tests
like the ratio test (perhaps if an has factorials and powers) or the integral test (if

an = f (n) and
∫
f (x) dx is not too hard to compute).

But the ratio test and integral test are not the only tools in our toolbox. The
comparison test, which we discussed in Section 2.7, is extremely useful.

Example 3.3.1 Does
∞∑
n=2

1
n2 logn

converge?

When I write log, I mean the natural logarithm. I
prefer writing logn to writing lnn.Solution The obvious first approach, based on what we know, is the integral

test. Unfortunately, we can’t compute the required antiderivative. But looking
at the series, it would appear that it must converge, because the terms we are
adding are smaller than the terms of a p-series, that is,

1
n2 logn

<
1
n2 ,

when n ≥ 3. Since adding up the terms 1/n2 doesn’t get “too big”, the new
series “should” also converge. Let’s make this more precise.

The series
∞∑
n=2

1
n2 logn

converges if and only if
∞∑
n=3

1
n2 logn

converges—all

we’ve done is dropped the initial term. We know that
∞∑
n=3

1
n2 converges. Looking

at two typical partial sums:

sn =
1

32 log 3
+

1
42 log 4

+
1

52 log 5
+ · · ·+

1
n2 logn

<
1
32 +

1
42 +

1
52 + · · ·+

1
n2 = tn .

Since the p-series converges, say to L, and since the terms are positive, tn < L.
Since the terms of the new series are positive, the sn form an increasing
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sequence and sn < tn < L for all n. Hence the sequence {sn} is bounded and
so converges.

Sometimes, even when the integral test applies, comparison to a known series
is easier, so it is a good idea to think about doing a comparison before doing the
integral test.

Like the integral test, the comparison test can be used to show both convergence
and divergence. In the case of the integral test, a single calculation will confirm
whichever is the case. To use the comparison test we must first have a good idea as
to convergence or divergence and pick the sequence for comparison accordingly.

Example 3.3.2 Does
∞∑
n=2

1
√
n2 − 3

converge?

Solution We observe that the −3 should have little effect compared to the n2

inside the square root, and therefore guess that the terms are enough like
1/
√
n2 = 1/n that the series should diverge. We attempt to show this by

comparison to the harmonic series. We note that

1
√
n2 − 3

>
1
√
n2

=
1
n

,

so that

sn =
1

√
22 − 3

+
1

√
32 − 3

+ · · ·+
1

√
n2 − 3

>
1
2
+

1
3
+ · · ·+

1
n
= tn ,

where tn is 1 less than the corresponding partial sum of the harmonic series
(because we start at n = 2 instead of n = 1). Since lim

n→∞
tn = ∞, lim

n→∞
sn = ∞

as well.

So the general approach is this: If you believe that a new series is convergent,
attempt to find a convergent series whose terms are larger than the terms of the
new series; if you believe that a new series is divergent, attempt to find a divergent
series whose terms are smaller than the terms of the new series. This is more of an
art than a science, which is part of what makes these sorts of problems so much
fun to do.
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Example 3.3.3 Does
∞∑
n=1

1
√
n2 + 3

converge?

Solution Just as in the last example, we guess that this is very much like the
harmonic series and so diverges. Unfortunately,

1
√
n2 + 3

<
1
n

,

so we can’t compare the series directly to the harmonic series. A little thought
leads us to

1
√
n2 + 3

>
1

√
n2 + 3n2

=
1

2n
,

so if
∑

1/(2n) diverges then the given series diverges. But since
∑

1/(2n) =

(1/2)
∑

1/n, theorem ?? implies that it does indeed diverge.
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Exercises for Section 3.3

Determine whether the series converge or diverge.

(1)
∞∑
n=1

1
2n2 + 3n + 5 à

(2)
∞∑
n=2

1
2n2 + 3n − 5 à

(3)
∞∑
n=1

1
2n2 − 3n − 5 à

(4)
∞∑
n=1

3n + 4
2n2 + 3n + 5 à

(5)
∞∑
n=1

3n2 + 4
2n2 + 3n + 5 à

(6)
∞∑
n=1

logn
n à

(7)
∞∑
n=1

logn
n3 à

(8)
∞∑
n=2

1
logn à

(9)
∞∑
n=1

3n

2n + 5n à

(10)
∞∑
n=1

3n

2n + 3n à
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3.4 The mostly useless root test

There is another convergence test called the root test, which can be justified with an
argument not so different2 from that which justified the ratio test in Subsection 3.1.1. 2 Indeed, justifying the root test makes a good exer-

cise for you, the reader, so it is included among the
exercises for this section.

The root test is very occasionally easier to apply, but usually not as good as choosing
to use the ratio test.

With those disparaging remarks out of the way, let us now state the root test.

Theorem 3.4.1 (The Root Test) Consider the series
∞∑
n=0

an where each term

an is positive. Suppose that lim
n→∞

(an)
1/n = L. Then,

• if L < 1 the series
∑

an converges,

• if L > 1 the series diverges, and

• if L = 1, then the root test is inconclusive.

Let’s apply the root test to analyze the convergence of a series.

Example 3.4.2 Analyze
∞∑
n=0

5n

nn
.

Solution Usually, the ratio test is a good choice when the series involves nth

powers; in this case, the ratio test turns out to be a bit difficult on this series,
since we have to calculate

lim
n→∞

5n+1/(n + 1)n+1

5n/nn
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and that may not be entirely obvious. So we, bedgrudgingly, apply the root
test, which asks us to calculate

L = lim
n→∞

(
5n

nn

)1/n

= lim
n→∞

(5n)1/n

(nn)1/n

= lim
n→∞

5
n
= 0.

Since L = 0 < 1, we may conclude that the given series converges.

The root test is frequently useful when n appears as an exponent in the general
term of the series—though the ratio test is also useful in that case. Technically,
whenever the ratio test is conclusive (i.e., whenever lim

n→∞
an+1/an = L , 1), so is

the root test—but not vice versa. In other words, the root test does work on some
series that the ratio test fails on.

Example 3.4.3 Find a series for which the ratio test is inconclusive, but the
root test determines that the series converges.

Solution Here is such a situation. Try using the ratio test on
∞∑
n=1

an where

(an) is a sequence which “stutters” like

an =

1/2n/2 if n is even, and

1/2(n+1)/2 if n is odd.

Note that a1 = a2 and a3 = a4 and a5 = a6, so an+1/an is often 1, which
messes up the ratio test—indeed, lim

n→∞
an+1/an does not exist in this case.

Nevertheless,

n√an =

1/21/2 if n is even, and

1/2(n+1)/(2n) if n is odd,

and so lim
n→∞

n√an = 1/
√

2 < 1, which means the sequence converges by the
root test. Admittedly, we didn’t need the root test: this series is just a geometric
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series where the terms repeat, so it definitely converges. Still, it proves the
point that the ratio test can fail while the root test succeeds.
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Exercises for Section 3.4

(1) Prove theorem 3.4.1, the root test.à
(2) Compute lim

n→∞
|an |

1/n for the series
∑

1/n2. à

(3) Compute lim
n→∞

|an |
1/n for the series

∑
1/n. à



4 Alternating series

4.1 Absolute convergence

Roughly speaking there are two ways for a series to converge: As in the case of
∞∑
n=1

1/n2, the individual terms get small very quickly, so that the sum of all of

them stays finite, or, as in the case of
∞∑
n=1

(−1)n+1/n, the terms don’t get small fast

enough (
∞∑
n=1

1/n diverges), but a mixture of positive and negative terms provides

enough cancellation to keep the sum finite. You might guess from what we’ve seen
that if the terms get small fast enough to do the job, then whether or not some
terms are negative and some positive the series converges.

Theorem 4.1.1 If
∞∑
n=1
|an | converges, then

∞∑
n=1

an converges.
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Proof Note that 0 ≤ an + |an | ≤ 2|an | so by the comparison test
∞∑
n=1

(an + |an |)

converges. Now

∞∑
n=1

(an + |an |) −
∞∑
n=1
|an | =

∞∑
n=1

(an + |an | − |an |)

=
∞∑
n=1

an

converges by Theorem 2.3.4.

So given a series
∞∑
n=1

an with both positive and negative terms, you should first

ask whether
∞∑
n=1
|an | converges. This may be an easier question to answer, because

we have tests that apply specifically to series with non-negative terms. If
∞∑
n=1
|an |

converges then you know that
∞∑
n=1

an converges as well. If
∑
|an | diverges then it

still may be true that
∞∑
n=1

an converges—you will have to do more work to decide

the question. Another way to think of this result is: it is (potentially) easier for
∞∑
n=1

an to converge than for
∞∑
n=1
|an | to converge, because the latter series cannot

take advantage of cancellation. With this terminology, Theorem 4.1.1 is saying that
an absolutely convergent series is also a plain old
convergent series.If

∞∑
n=1
|an | converges we say that

∞∑
n=1

an is absolutely convergent; to say that

∞∑
n=1

an converges absolutely is to say that any cancellation that happens to come

along is not really needed, as the terms already get small so fast that convergence

is guaranteed by that alone. If
∞∑
n=1

an converges but
∞∑
n=1
|an | does not, we say that
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∞∑
n=1

an converges conditionally. For example,
∞∑
n=1

(−1)n−1 1
n2 converges absolutely,

while
∞∑
n=1

(−1)n−1 1
n

converges conditionally.

Example 4.1.2 Does
∞∑
n=2

sinn
n2 converge?

Solution In Example 2.7.7, we saw that
∞∑
n=2

| sinn|
n2 converges, so the given

series converges absolutely.

Example 4.1.3 Does
∞∑
n=1

(−1)n
3n + 4

2n2 + 3n + 5
converge?

Solution Taking the absolute value,
∞∑
n=1

3n + 4
2n2 + 3n + 5

diverges by comparison

to
∞∑
n=1

3
10n

, so if the series converges it does so conditionally. It is true

that lim
n→∞

(3n + 4)/(2n2 + 3n + 5) = 0, so to apply the alternating series

test we need to know whether the terms are decreasing. If we let f (x) =

(3x + 4)/(2x2 + 3x + 5) then f ′(x) = −(6x2 + 16x − 3)/(2x2 + 3x + 5)2,
and it is not hard to see that this is negative for x ≥ 1, so the series is
decreasing and by the alternating series test it converges.
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Exercises for Section 4.1

Determine whether each series converges absolutely, converges conditionally, or diverges.

(1)
∞∑
n=1

(−1)n−1 1
2n2 + 3n + 5 à

(2)
∞∑
n=1

(−1)n−1 3n2 + 4
2n2 + 3n + 5 à

(3)
∞∑
n=1

(−1)n−1 lnn
n à

(4)
∞∑
n=1

(−1)n−1 lnn
n3 à

(5)
∞∑
n=2

(−1)n
1

lnn à

(6)
∞∑
n=0

(−1)n
3n

2n + 5n à

(7)
∞∑
n=0

(−1)n
3n

2n + 3n à

(8)
∞∑
n=1

(−1)n−1 arctann
n à
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4.2 Alternating series test

Next we consider series with both positive and negative terms, but in a regular
pattern: the signs alternate, as in the alternating harmonic series for example:

∞∑
n=1

(−1)n+1

n
=

1
1
+
−1
2

+
1
3
+
−1
4

+ · · ·

=
1
1
−

1
2
+

1
3
−

1
4
+ · · · .

In this series the sizes of the terms decrease, that is, |an | forms a decreasing
sequence, but this is not required in an alternating series. As with positive term
series, however, when the terms do have decreasing sizes it is easier to analyze the
series, much easier, in fact, than positive term series. Consider pictorially what
is going on in the alternating harmonic series, shown in Figure 4.1. Because the
sizes of the terms an are decreasing, the partial sums s1, s3, s5, and so on, form a
decreasing sequence that is bounded below by s2, so this sequence must converge.
Likewise, the partial sums s2, s4, s6, and so on, form an increasing sequence that is
bounded above by s1, so this sequence also converges. Since all the even numbered
partial sums are less than all the odd numbered ones, and since the “jumps” (that is,
the ai terms) are getting smaller and smaller, the two sequences must converge to
the same value, meaning the entire sequence of partial sums s1, s2, s3, . . . converges
as well.

0 1 Figure 4.1: Partial sums of the alternating harmonic
series

There’s nothing special about the alternating harmonic series—the same argument
works for any alternating sequence with decreasing size terms. The alternating
series test is worth calling a theorem.
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Theorem 4.2.1 Suppose that (an) is a decreasing sequence of positive num-

bers and lim
n→∞

an = 0. Then the alternating series
∞∑
n=1

(−1)n+1an converges.

We have considered alternating series with first index
1, and in which the first term is positive, but a little
thought shows this is not crucial. The same test

applies to any similar series, such as
∞∑
n=0

(−1)nan ,

∞∑
n=1

(−1)nan ,
∞∑

n=17
(−1)nan , etc.

Proof The odd numbered partial sums, s1, s3, s5, and so on, form a de-

creasing sequence, because s2k+3 = s2k+1 − a2k+2 + a2k+3 ≤ s2k+1, since

a2k+2 ≥ a2k+3. This sequence is bounded below by s2, so it must converge,

say lim
k→∞

s2k+1 = L. Likewise, the partial sums s2, s4, s6, and so on, form

an increasing sequence that is bounded above by s1, so this sequence also

converges, say lim
k→∞

s2k = M . Since lim
n→∞

an = 0 and s2k+1 = s2k + a2k+1,

L = lim
k→∞

s2k+1 = lim
k→∞

(s2k + a2k+1) = lim
k→∞

s2k + lim
k→∞

a2k+1 = M + 0 = M ,

so L = M , the two sequences of partial sums converge to the same limit, and

this means the entire sequence of partial sums also converges to L.

We have shown more than convergence: if we are careful about thinking about
the previous argument, we can find error bounds. Let’s see how. Suppose that

L =
∞∑
n=1

(−1)n+1an

and that we approximate L by a finite part of this sum, say

L ≈
N∑
n=1

(−1)n+1an .

Because the terms are decreasing in size, we know that the true value of L must be
between this approximation and the next one, that is, between

N∑
n=1

(−1)n+1an and
N+1∑
n=1

(−1)n+1an .

Depending on whether N is odd or even, the second will be larger or smaller than
the first. This is important enough that it deserves to be highlighted as a theorem.
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Theorem 4.2.2 Suppose that {an}∞n=1 is a decreasing sequence of positive

numbers and lim
n→∞

an = 0. By Theorem 4.2.1, we then know that
∞∑
n=1

(−1)n+1an

converges to some value, say L. Moreover, L is between

N∑
n=1

(−1)n+1an and
N+1∑
n=1

(−1)n+1an .

Example 4.2.3 Approximate the alternating harmonic series to one decimal
place.

Solution We need to go roughly to the point at which the next term to be
added or subtracted is 1/10. Adding up the first nine and the first ten terms
we get approximately 0.746 and 0.646. These are 1/10 apart, but it is not
clear how the correct value would be rounded. It turns out that we are able to
settle the question by computing the sums of the first eleven and twelve terms,
which give 0.737 and 0.653, so correct to one place the value is 0.7.
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Exercises for Section 4.2

Determine whether the following series converge or diverge.

(1)
∞∑
n=1

(−1)n+1

2n + 5 à

(2)
∞∑
n=4

(−1)n+1
√
n − 3 à

(3)
∞∑
n=1

(−1)n+1 n

3n − 2 à

(4)
∞∑
n=1

(−1)n+1 lnn
n à

(5) Approximate
∞∑
n=1

(−1)n+1 1
n3 to two decimal places. à

(6) Approximate
∞∑
n=1

(−1)n+1 1
n4 to two decimal places. à



5 Another comparison test

We’ve covered a ton of material thus far in this course; there is one more comparison
test that comes in quite handy—the Limit Comparison Test—which we will meet in
Section 5.2. The purpose of this chapter, however, runs deeper than “just” another
comparison test.

The emphasis on series has been almost entirely on the question of their conver-
gence; we have not paid much heed to the value of the series, but we’ve developed
a lot of techniques to analyze their convergence. The question is always “Does it
converge?” and the answer is “yes, it converges!” or “no, it does not converge.”
Considering how qualitative our answer is, we might hope that there are equally
qualitative methods for analyzing series. If convergence is just a yes-or-no mat-
ter, one might hope that the methods for analyzing series are equally loose and
qualitative.

But that hasn’t been our experience. Convergence is a tricky business, requiring
precision and careful analysis. There have been hints, though, that things are easier
than they seem: the comparison test is perhaps the best example of that. In your
past mathematical life, you’ve probably been given “expressions” or “equations” to
which you apply various rules in order to derive an answer. With the comparison
test, the situation is less about rules, and more about creatively ignoring parts of
the expression in order to find a useful bound. More than being rule-based, testing
convergence via the comparison test requires some guesswork, and a willingness to
ignore the parts of the expression that don’t matter, in order to get at the part that
does.

Let me be more precise. Suppose we wanted to analyze the convergence of a
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series such as
∞∑

n=52

n4 − 3n + 5
2n5 + 5n3 − n2

This is a complicated series, but the given expression is the ratio between a fifth
degree polynomial and a fourth degree polynomial, so this series “is more or less”
the same as the series

∞∑
n=52

n4

n5 =
∞∑

n=52

1
n

which is the harmonic series, and diverges! This is how we’d like to think, but we
need to justify the concept of “is more or less.” This is what Section 5.2 will teach
us to do.

5.1 Convergence depends on the tail

The harmonic series diverges, but so does the series

∞∑
n=100

1
n
=

1
100

+
1

101
+

1
102

+
1

103
+ · · ·

Convergence doesn’t depend on the beginning of the series; whether or not I include
the first 99 terms

1
1
+

1
2
+

1
3
+ · · ·+

1
97

+
1
98

+
1
99

does affect whether or the sum of all the terms diverges. In short, convergence
depends not on how a series begins, but on how a series ends. The end of a series
is sometimes called the tail of the series.

Definition Let N > 1 be an integer, and consider a series
∞∑
n=1

an. The series

we get by removing the first N − 1 terms, namely

∞∑
n=N

an
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is called a tail of the given series.

Here is the theorem that describes how tails relate to convergence.

Theorem 5.1.1 Let N > 1 be an integer. The series
∞∑
n=1

an converges if and

only if
∞∑
n=N

an converges.

This could be shortened to “The series converges iff a tail of the series converges,” or
even just to the slogan that convergence depends on the tail.

Proof Suppose
∞∑
n=1

an converges to L, meaning

lim
M→∞

M∑
n=1

an = L.

In that case, applying limit laws reveals

lim
M→∞

M∑
n=N

an = lim
M→∞


 M∑
n=1

an

 −
N−1∑
n=1

an




= lim
M→∞

 M∑
n=1

an

 − lim
M→∞

N−1∑
n=1

an


= lim

M→∞

 M∑
n=1

an

 −
N−1∑
n=1

an


= L −

N−1∑
n=1

an

 ,
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which means the series
M∑
n=N

an converges.

The other direction is left to you, the reader.

Example 5.1.2 Does the series
∞∑

n=153

1
n2 converge?

Solution Yes! This series is a tail of the convergent p-series
∞∑
n=1

1
n2 ; in this

case, p = 2.

You might recall Example 3.1.1, which we’ll redo here.

Example 5.1.3 Show that
∞∑
n=0

n5

5n
converges by using the comparison test and

Theorem 5.1.1.

Solution The given series converges iff
∞∑

n=23

n5

5n
by Theorem 5.1.1. But when-

ever n ≥ 23, we have
n5

5n
≤

2n

5n
=

(2
5

)n
The series

∞∑
n=23

(2
5

)n
converges, since it is a geometric series with common

ratio 2/5, so by comparison, the smaller series
∞∑

n=23

n5

5n
also converges.

In light of Theorem 5.1.1, many textbooks will choose to write

∑
n

an
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instead of
∞∑
n=1

an when discussing convergence. Whether or not the series converges

doesn’t depend on the initial index, so if we want to state theorems about conver-
gence, we can avoid potentially distracting details by simply not speaking about
where the series begins.

5.2 Limit comparison test

This test is usually called the limit comparison test,

Theorem 5.2.1 Suppose an ≥ 0 and bn ≥ 0. Then if

lim
n→∞

an
bn

= L > 0,

the series
∞∑
n=1

an converges if and only if
∞∑
n=1

bn converges.

The idea is that this is basically a comparison test, but instead of asking for
something on the nose, like 0 ≤ an ≤ bn, I am instead asking only that an and bn
be similar in size.

5.2.1 Proof of the Limit Comparison Test

Assuming lim
n→∞

an
bn

= L > 0, then we may also conclude that lim
n→∞

bn
an

= 1/L > 0.

Theorem 5.2.2 Suppose an ≥ 0 and bn ≥ 0. Then if

lim
n→∞

an
bn

= L > 0,

the series
∞∑
n=1

an converges if and only if
∞∑
n=1

bn converges.
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5.2.2 How to apply the Limit Comparison Test

Example 5.2.3 Does the series

∞∑
n=52

n4 − 3n + 5
2n5 + 5n3 − n2

converges or diverge?

Solution We will invoke the Limit Comparison Test, that is, Theorem 5.2.2.
Set

an =
n4 − 3n + 5

2n5 + 5n3 − n2 and bn =
1
n

,

so in this case,

lim
n→∞

an
bn

= lim
n→∞

n4 − 3n + 5
2n5 + 5n3 − n2 ·

n

1

= lim
n→∞

n5 − 3n2 + 5n
2n5 + 5n3 − n2

= lim
n→∞

n5 − 3n2 + 5n
2n5 + 5n3 − n2 ·

1/n5

1/n5

= lim
n→∞

1 − 3
n3 + 5

n4

2 + 5
n2 −

1
n3

=
limn→∞

(
1 − 3

n3 + 5
n4

)
limn→∞

(
2 + 5

n2 −
1
n3

)
=

1
2
> 0,

and so
∞∑

n=52

an and
∞∑

n=52

bn share the same fate. But
∞∑

n=52

bn diverges, and so

too does
∞∑

n=52

an.

Of course, we could have just used a direct comparison test; the big benefit here is
that it is relatively painless to compute the limit, but it requires significant creativity
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to set up a direct comparison test. Think back, for instance, to Example 3.1.1.





6 Power series

6.1 Definitions

At first, we studied the geometric series

∞∑
n=0

(1
2

)n
,

but then we replaced
1
2

with a variable, so we were able to analyze all geometric
series simultaneously. In the end, we discovered that

∞∑
n=0

kxn =
k

1 − x
if |x | < 1,

and that the series diverges when |x | ≥ 1. At the time, we thought of x as an You may recall that we used r instead of x; I think r
was a good choice back then, since r evokes “ratio”
and stood for the common ratio between the terms
in a geometric series. Now we use x, which I think
is a good choice now. Why the change? To me, x
suggests “independent variable of a function” much
more generally than just a parameter in a geometric
series, and we will be thinking very broadly about
how quite general functions can be represented as
a power series. One may regard power series as a
natural generalization of polynomials, and you may
already be comfortable thinking of x as the variable
in a polynomial.

unspecified constant, but we could just as well think of it as a variable. A number
which depends on another number is just a function, so we may write

f (x) =
∞∑
n=0

kxn

and then observe that it is also the case that f (x) = k/(1 − x), as long as |x | < 1.
While k/(1 − x) is a reasonably easy function to deal with, the more complicated∑

kxn does have its attractions: it appears to be an infinite version of one of the
simplest sorts of functions—a polynomial. Do other functions have representations
as series? Is there an advantage to viewing them in this way?
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Usually the coefficients aren’t all the same in a polynomial; the geometric series
is somewhat unusual in that all the coefficients of the powers of x are the same,
namely k. We will need to allow more general coefficients if we are to get anything
other than the geometric series.

Definition Let (an) be a sequence of real numbers starting with a0. Then the
power series associated to (an) is

∞∑
n=0

an x
n .

Sometimes people are confused when considering, say,

∞∑
n=0

(sin x) · xn .

Despite appearances, we will not be regarding such series as “power series.” Since
(an) is a sequence of real numbers, the coefficients an cannot depend on x.

6.2 Convergence of power series
In Example 6.2.1, note that we are no longer con-
sidering convergence of a single series; instead, by
regarding x as a parameter, we are considering con-
vergence for a whole family of series—namely all

those of the form
∞∑
n=1

xn/n. It often happens in

mathematics that it is wiser to study a family of
objects simultaneously than to study a single object
in isolation.

Example 6.2.1 Consider the power series

f (x) =
∞∑
n=1

xn

n
.

For which x does this converge?

Another way to think of this question is this: we are being asked to determine
the domain of f .

Solution We can investigate the convergence of this series using the ratio test.
The difficulty now is that, instead of a single limit, we must now compute a
limit than involves a variable x which is not the variable with respect to which
we are taking a limit.

Another issue is that x may be negative, so we will actually check absolute
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convergence; in other words, we are actually considering

f (x) =
∞∑
n=1

∣∣∣∣∣xnn
∣∣∣∣∣ .

Bravely,

L = lim
n→∞

|x |n+1

n+1
|x |n

n

= lim
n→∞

|x |n+1

n + 1
·

1
|x |n

n

= lim
n→∞

|x |n+1

n + 1
·
n

|x |n

= lim
n→∞

|x |n+1 · n

(n + 1) · |x |n

= lim
n→∞

|x |
n

n + 1
= |x | · lim

n→∞

n

n + 1
= |x |.

So when L = |x | < 1, the ratio test says that the series converges absolutely.
When |x | > 1, the series does not converge absolutely—in fact, when |x | > 1, we
have that

lim
n→∞

xn

n
, 0

and so the series diverges.
So when |x | < 1 the series converges and when |x | > 1 it diverges, which

leaves only two values in doubt. When x = 1, the series is the harmonic series
and diverges; when x = −1, it is the alternating harmonic series (rather, the
negative of the “usual” alternating harmonic series) and converges.

In other words, we may regard f as a function with domain [−1, 1).

We analyzed this power series by invoking the ratio test, but that was no accident.
We will see that the ratio test applied to a power series will always have the same nice
form. Feeling confident from our display of bravery before the preceding example,
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let’s attack the general case of a power series

f (x) =
∞∑
n=0

an x
n .

When does this series converge absolutely? Applying the ratio test again, we find

L = lim
n→∞

|an+1| · |x |n+1

|an | · |x |n

= lim
n→∞

|x | ·
|an+1|

|an |

= |x | · lim
n→∞

|an+1|

|an |
.

So the series converges absolutely whenever L < 1, but in this case, L depends in a
rather uncomplicated way on |x |. The whole story is controlled by a limit that does

not depend on x, namely

1/R = lim
n→∞

|an+1|

|an |
,

which you see I have presciently related to a hitherto unmentioned variable, R. So
the series converges absolutely whenever |x |/R < 1, meaning the series converges
absolutely whenever |x | < R. When |x | > R, the series diverges1. 1 This is a consequent of the ratio test, but perhaps

we haven’t emphasized it enough; if L > 1 in the
ratio test, then the limit of the terms is not zero, so
not only does the series not converge absolutely—the
original series diverges, too, by the limit test.

Once again, only the two values x = ±R require further investigation. In any
case, if we begin with a sequence (an) for which

1/R = lim
n→∞

|an+1|

|an |
,

the associated power series
∞∑
n=0

anx
n will converge for values of x in the interval

(−R,R), and it may even converge (or not, depending on the specific situation) at
x = R or at x = −R, so sometimes the interval on which the series makes sense will
be [−R,R) or (−R,R] or even [−R,R].
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Definition The set of values of x for which the series
∞∑
n=0

an x
n converges is

the interval of convergence.

As a consequence of the above discussion, the interval of convergence of a power
series always have a nice form.

Theorem 6.2.2 For a power series, the interval of convergence is, in fact, an
interval. It has the form (R,−R) or [−R,R) or (−R,R] or [−R,R]. In short, it is
centered around 0.

Because the interval of convergence is, indeed, centered around 0, and because
we often don’t care about what happens at the endpoint, it is often convenient to
just describe R.

Definition In the interval of convergence of a power series, the value R is
called the radius of convergence of the series.

Two special cases deserve mention. If

lim
n→∞

|an+1|

|an |
= 0,

then we might say “R = ∞” since no matter what x is, the product

|x | lim
n→∞

|an+1|

|an |
= 0,

and therefore for all values of x, the power series
∞∑
n=0

an x
n converges. So the radius

of convergence, R, is infinite.
The opposite may happen as well. It may happen that

lim
n→∞

|an+1|

|an |
= ∞,
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in which case the only way that

|x | lim
n→∞

|an+1|

|an |
< 1

is when |x | = 0. The interval of convergence is just the single point {0}. And in this
case, we say R = 0.

Warning People often confuse “radius of convergence” with “interval of con-
vergence.” For starters, the radius of convergence is a single number, while
the interval of convergence is, well, an interval (though it was defined as just a
set—the fact that the set where the series converges is an interval was a theorem
and was certainly not obvious—perhaps the first of many lovely surprises with
power series).

There is another difference between the radius of convergence and the
interval of convergence; it is not simply that they are the same information
in different packages. The radius of convergence cannot distinguish between,
say, (−R,R) versus [−R,R]. The interval of convergence contains the extra
information about what is happening at the endpoints. So a homework question
which asks you to find the radius R is much easier than a homework question
asking you to find the interval.

6.3 Power series centered elsewhere

If we are speaking of the “radius” of convergence, you might wonder about the “center”
of convergence. Thus far, our intervals of convergence have been centered around
the origin, but by changing the series, we can move the interval of convergence.
Let’s see how.

Consider once again the geometric series,

f (x) =
∞∑
n=0

xn =
1

1 − x
for x ∈ (−1, 1).

Whatever benefits there might be in using the series form of this function are only
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available to us when x is between −1 and 1. We can address this shortcoming by
modifying the power series slightly.

Example 6.3.1 Find a series representation for
1

1 − x
valid on the interval

(−5, 1).

Solution Consider that the series

∞∑
n=0

(x + 2)n

3n
=

∞∑
n=0

(x + 2
3

)n
=

1
1 − x+2

3
=

3
1 − x

,

because this is just a geometric series with x replaced by (x+2)/3. Multiplying
both sides by 1/3 gives

∞∑
n=0

(x + 2)n

3n+1 =
1

1 − x
,

the same function as before. For what values of x does this series converge?
Since it is a geometric series, we know that it converges when

|x + 2|/3 < 1

|x + 2| < 3

−3 < x + 2 < 3

−5 < x < 1.

So we have a series representation for 1/(1− x) that works on a larger interval
than before, at the expense of a somewhat more complicated series. The
endpoints of the interval of convergence now are −5 and 1, but note that those
two endpoints can be described as −2 ± 3. We say that 3 is the radius of
convergence, and we now say that the series is centered at −2.

Let’s capture this in a definition. It is worth contrasting Definition 18 with Defini-
tion 15, our original description of power series. In

particular,
∞∑
n=0

an x
n is a power series centered at

zero.
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Definition Let (an) be a sequence of real numbers starting with a0. Then the
power series centered at c and associated to (an) is the series

∞∑
n=0

an (x − c)
n .

In Example 6.3.1, we formed a series that involved (x + 2)n, meaning that in
that case c = −2.

You are now in a position to try your hand at finding the radius of convergence
and sometimes even the interval of convergence for some power series. I encourage
you to cook up your own power series, and then see what you can say about the
radius and interval of convergence.
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Exercises for Section 6.3

Find the radius and interval of convergence for each series. In exercises 3 and 4, do not
attempt to determine whether the endpoints are in the interval of convergence.

(1)
∞∑
n=0

nxn à

(2)
∞∑
n=0

xn

n! à

(3)
∞∑
n=1

n!
nn
xn à

(4)
∞∑
n=1

n!
nn

(x − 2)n à

(5)
∞∑
n=1

(n!)2

nn
(x − 2)n à

(6)
∞∑
n=1

(x + 5)n

n(n + 1) à

(7) Find a power series with radius of convergence 0. à
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6.4 Calculus with power series

Now we know that some functions can be expressed as power series, which look
like infinite polynomials. Since calculus, that is, computation of derivatives and
antiderivatives, is easy for polynomials, the obvious question is whether the same is
true for infinite series. The answer is yes!

Theorem 6.4.1 Suppose the power series f (x) =
∞∑
n=0

an(x − c)
n has radius

of convergence R. Then

f ′(x) =
∞∑
n=1

nan(x − c)
n−1,

∫
f (x) dx = C+

∞∑
n=1

an
n + 1

(x − c)n+1,

for values of x in the interval (c − R, c + R). The two new series have radius of
convergence R, just like the original series.

Example 6.4.2 Find an alternating series for log
(3
2

)
. Approximate this value

to two decimal places.

Solution Begin with the geometric series, namely

1
1 − x

=
∞∑
n=0

xn .
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Then integrate term-by-term to find∫
1

1 − x
dx = − log |1 − x | =

∞∑
n=0

1
n + 1

xn+1

log |1 − x | =
∞∑
n=0
−

1
n + 1

xn+1

for real numbers x such that |x | < 1. To compute log(3/2), we should choose
x = −1/2. In that case,

log(3/2) = log(1 − −1/2)

=
∞∑
n=0

(−1)n
1

n + 1
1

2n+1

and so

log(3/2) ≈
1
2
−

1
8
+

1
24
−

1
64

+
1

160
−

1
384

+
1

896
=

909
2240

≈ 0.406.

Because this is an alternating series with decreasing terms, we know that the
true value is between 909/2240 and 909/2240 − 1/2048 = 29053/71680 ≈
.4053, so log(3/2) is, to two decimal places, 0.41.

Example 6.4.3 What about log(9/4)? Find an approximate value for it.

Solution Since 9/4 is larger than 2 we cannot use the series directly, but

log(9/4) = log((3/2)2) = 2 log(3/2) ≈ 0.82,

so in fact we get a lot more from this one calculation than first meets the eye.
To estimate the true value accurately we actually need to be a bit more careful.

When we multiply by two we know that the true value is between 0.8106
and 0.812, and so, rounded to two decimal places, the true value is 0.81.
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Exercises for Section 6.4

(1) Find a series representation for log 2. à
(2) Find a power series representation for 1/(1 − x)2. à
(3) Find a power series representation for 2/(1 − x)3. à
(4) Find a power series representation for 1/(1 − x)3. What is the radius of convergence?

à

(5) Find a power series representation for
∫

log(1 − x) dx. à



7 Taylor series

We have seen that some functions can be represented as series. But thus far, our
only examples have been those that result from manipulation of our one fundamental
example, the geometric series. We might start with

1
1 − x

=
∞∑
n=0

xn when |x | < 1,

and then, say, integrate term-by-term to get a formula for a logarithm, as we did in
Example 6.4.2. Instead of starting with a series representing a function, and then
messing around with the series to find more functions represented by series, we
should start with a function, and then try to find a series that represents it—if that
is possible!

7.1 Finding Taylor series

The easiest case is when the function f is given to us as a power series already! It might seem that considering this case is pointless:
who cares about representing a function by a power
series if the function is given to us as a power se-
ries? The point is not to come up with a new power
representation: the point is to relate the derivatives
of the function to the coefficients of the power series,
which is the sort of thing that generalizes. By study-
ing a case we already understand completely, we are
seeking insights which will apply even in cases we
don’t fully understand.

Suppose that f (x) =
∞∑
n=0

anx
n on some interval of convergence, say, when |x | <

R. Then we know, by Theorem 6.4.1, that we can compute derivatives of f by
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differentiating the series term-by-term. Let’s look at the first few derivatives.

f ′(x) =
∞∑
n=1

nanx
n−1 = a1 + 2a2x + 3a3x

2 + 4a4x
3 + · · ·

f ′′(x) =
∞∑
n=2

n(n − 1)anxn−2 = 2a2 + 3 · 2a3x + 4 · 3a4x
2 + · · ·

f ′′′(x) =
∞∑
n=3

n(n − 1)(n − 2)anxn−3 = 3 · 2a3 + 4 · 3 · 2a4x + · · ·

By examining these derivatives, we can discern the general pattern. The kth

derivative must be Recall that, for a function f , we write its kth deriva-
tive by writing f (k). So the kth derivative evaluated
at x is written f (k)(x).

f (k)(x) =
∞∑
n=k

n(n − 1)(n − 2) · · · (n − k + 1)anxn−k

= k(k − 1)(k − 2) · · · (2)(1)ak + (k + 1)(k) · · · (2)ak+1x +

+ (k + 2)(k + 1) · · · (3)ak+2x
2 + · · · ,

but we can write this more easily by using factorials, namely

f (k)(x) =
∞∑
n=k

n!
(n − k)!

anx
n−k = k!ak + (k + 1)!ak+1x +

(k + 2)!
2!

ak+2x
2 + · · · .

Now, substituting x = 0 yields

f (k)(0) = k!ak +
∞∑

n=k+1

n!
(n − k)!

an0n−k = k!ak ,

and solving for ak gives

ak =
f (k)(0)
k!

.

So if a function f can be represented by a series, we know just what series it is! We
know the series because we know the derivatives of f . Note that ak = f (k)(0)/k! makes sense even when

k = 0, since in that special case, we have a0 =
f (0)(0)/0! = f (0) because the zeroth derivative of f
is f itself, and 0! = 1.
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Definition Given a function f , the series

∞∑
n=0

f (n)(0)
n!

xn

is called the Maclaurin series for f , or often just the Taylor series for f
centered around zero, since it is a power series centered around zero in the
sense of Section 6.3.

Let me warn you that, in order to write down this power series, you had better be
able to take first, second, third—indeed, nth—derivatives at zero, because the given
formula involves f (n)(0). And there is a worse warning.

Warning Even if f is infinitely differentiable at zero (meaning f (n)(0) makes
sense), even if I then write down

∞∑
n=0

f (n)(0)
n!

xn ,

does not mean that I have a power series for f valid on any open interval! All I
have done is written down the power series that must represent f assuming it

has a power series representation at all! Nobody is promising you that some
function you find—even if it is infinitely differentiable—actually has a power
series representation. In other words, I am not claiming that there is an R , 0
so that

f (x) =
∞∑
n=0

f (n)(0)
n!

xn for x ∈ (−R,R).

All I am claiming is that if f has such a power series, then I can find it by taking
derivatives.

Let’s see this worked out in an example we already understand, namely, for the
function f (x) = 1/(1 − x).
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Example 7.1.1 Find a Taylor series for f (x) = 1/(1 − x) centered around
zero.

Solution We need to compute the derivatives of f , and then hope to spot a
pattern. Here we go:

f (x) = (1 − x)−1,

f ′(x) = (1 − x)−2,

f ′′(x) = 2(1 − x)−3,

f ′′′(x) = 6(1 − x)−4,

f (4) = 4!(1 − x)−5,

...

f (n) = n!(1 − x)−n−1.

I see the pattern!
f (n)(0)
n!

=
n!(1 − 0)−n−1

n!
= 1,

and the Taylor series centered around zero is

∞∑
n=0

1 · xn =
∞∑
n=0

xn ,

which we already knew—it is just the geometric series.

So given a function f , we may be able to differentiate it around zero, spot a
pattern, and thereby compute the Taylor series, but that does not mean we have
found a series representation for f . Worse, we don’t even know if the series we wrote
down converges anywhere, let alone converges to the function f ! The miracle is that
for many popular functions1 the Taylor series does converge to f on some interval. 1 Arguably, this is not so surprising: maybe these

are popular functions precisely because they have
nice properties. That the sky is sky-colored is not so
surprising as the fact that it is blue.

But this is certainly not true of all functions—or even true of most2 functions!

2 Most functions are probably not even continuous,
let alone infinitely differentiable, let alone having the
property of having a power series representation!
The latter mouthful is usually termed real analytic.

As a practical matter, if we are interested in using a series to approximate a value
of a function at some point, we will need some finite number of terms of the series.
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Even for functions with terrible looking derivatives, we can compute the initial terms
using computer software like Sage. If we want to know the whole series—that is, the
nth term in the series for an arbitrary n—then we need a function whose derivatives
fall into a pattern that we can discern. A few of the most popular functions have
nice patterns. Let’s see some now!

Example 7.1.2 Find a Taylor series for sin x.

Solution The derivatives are quite easy, namely

f ′(x) = cos x ,

f ′′(x) = − sin x ,

f ′′′(x) = − cos x ,

f (4)(x) = sin x ,

and then the pattern repeats. We want to know the derivatives at zero, so
those are

f ′(0) = cos 0 = 1

f ′′(0) = − sin 0 = 0

f ′′′(0) = − cos 0 = −1,

f (4)(0) = sin 0 = 0,

and then the pattern repeats, namely it goes—starting from the zeroth derivative—
like this:

0, 1, 0, −1, 0, 1, 0, −1, 0, . . . .

And so, the Taylor series is

x −
x3

3!
+
x5

5!
− · · · =

∞∑
n=0

(−1)n
x2n+1

(2n + 1)!
.

Sometimes people are confused by the fact that the exponent in this power
series is 2n + 1 instead of just n. It turns out that setting it up this way,
with x2n+1, nicely manages to kill all the terms xeven number which have a zero

http://sagemath.org/
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coefficient, since differentiating f an even number of times results in ± sin x,
which is zero when x = 0.

But there is more to be anxious about. Before worrying whether this series
converges to sin x, we should ask the prior question: does this series converge
anywhere? Let’s determine the radius of convergence by using the ratio test,
which asks us to consider

L = lim
n→∞

|x |2n+3

(2n + 3)!
(2n + 1)!
|x |2n+1

= lim
n→∞

|x |2

(2n + 3)(2n + 2)
= 0,

and so the series converges regardless of what x is. It will turn out later, by
applying Theorem 7.2.1, that this series does converge to sin x.

Sometimes the formula for the nth derivative of a function f is difficult to discover,
but a combination of a known Taylor series and some algebraic manipulation leads
easily to the Taylor series for f .

Example 7.1.3 Find the Taylor series for f (x) = x sin(−x) centered at zero.

Solution To get from sin x to x sin(−x) we substitute −x for x and then multiply
by x. Let’s do the same thing to the series for sin x, namely

x
∞∑
n=0

(−1)n
(−x)2n+1

(2n + 1)!
= x

∞∑
n=0

(−1)n(−1)2n+1 x2n+1

(2n + 1)!

=
∞∑
n=0

(−1)n+1 x2n+2

(2n + 1)!
.
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Of course, we could have differentiated f (x), which would have yielded

f ′(x) = −x cos (−x) + sin (−x) = 0,

f ′′(x) = −x sin (−x) − 2 cos (−x) = −2,

f ′′′(x) = x cos (−x) − 3 sin (−x) = 0,

f (4)(x) = x sin (−x) + 4 cos (−x) = 4,

but maybe it would have been harder to pick up on the pattern that way.

As we have seen in Section 6.3, a general power series can be centered at a point
other than zero, and the method that produces the Taylor series can also produce
such series.

Definition Given a function f , the series

∞∑
n=0

f (n)(a)

n!
(x − c)n

is called the Taylor series for f centered around c.

Let’s see an example, reminiscent of Example 6.3.1 but attacked with a different
method.

Example 7.1.4 Find a Taylor series centered at −2 for 1/(1 − x).

Solution If the series is
∞∑
n=0

an(x + 2)n then looking at the kth derivative:

k!(1 − x)−k−1 =
∞∑
n=k

n!
(n − k)!

an(x + 2)n−k
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and substituting x = −2 we get k!3−k−1 = k!ak and ak = 3−k−1 = 1/3k+1, so
the series is

∞∑
n=0

(x + 2)n

3n+1 .
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Exercises for Section 7.1

For each function, find the Taylor series centered at c, and the radius of convergence. Do
not worry about whether or not the series converges to the given function—that will be our
concern in Section 7.2.

(1) cos x around c = 0, à
(2) ex around c = 0, à
(3) 1/x around c = 5 à
(4) log x around c = 1 à
(5) log x around c = 2 à
(6) 1/x2 around c = 1 à
(7) 1/

√
1 − x around c = 0 à

(8) Find the first four terms of the Taylor series for tan x centered at zero. By “first four terms”
I mean up to and including the x3 term. à

(9) Use a combination of Taylor series and algebraic manipulation to find a series centered
at zero for x cos(x2). à

(10) Use a combination of Taylor series and algebraic manipulation to find a series centered
at zero for xe−x . à
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7.2 Taylor’s Theorem

In Section 7.1, we were finding Taylor series without worrying at all that what
we were finding actually related to the original function f . We now remedy this
oversight.

Our whole mission in this, Chapter 7, was to start with a function, then write
down a power series converging to f , with the plan that we might finally use that
power series to, say, approximate values of the function, among other things. What
we have done thus far is assumed a function had such a power series representation,
and then deduced that the coefficients are somehow related to the derivatives of f .
So does the power series converge to the function?

And if the power series we got in Section 7.1 does converge to f , how good is the
approximation? I mean, if I just consider the first N terms of the power series, am
I close to f at all? How close? Remember our experience with alternating series?
For alternating series, Theorem 4.2.2 not only gave a test for convergence: it also
bounded how far the N th partial sum could be from the true value of the series.
Let’s see a similar sort of “error estimate” for power series.

Theorem 7.2.1 (Taylor’s theorem) Suppose that f is defined on some open
interval I = (a − R,a + R) around a and suppose the function f is (N + 1)-
times differentiable on I, meaning that f (N+1)(x) exists for x ∈ I. Then for each
x , a in I there is a value z between x and a so that

f (x) =
N∑
n=0

f (n)(a)

n!
(x − a)n +

f (N+1)(z)

(N + 1)!
(x − a)N+1.

The upshot here is that, by bounding the function f (N+1) on the interval between
x and a, we manage to bound the difference between f (x) and the partial sum.
See Example 7.2.2 for an example. But before we get to the example, let’s prove
Theorem 7.2.1; the proof perhaps seems unmotivated, since we’ll be “clever” in
setting things up, but I hope you will be able to follow the argument, even if you
don’t trust that you could have created the proof ex nihilo.
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Proof Define the function F (t) by

F (t) =
N∑
n=0

f (n)(t)

n!
(x − t)n + B(x − t)N+1 for t between a and x.

Here we have replaced a by t in the first N + 1 terms of the Taylor series, and

added a carefully chosen term on the end, with B to be determined. Note that

we are temporarily keeping x fixed, so the only variable in this equation is t, and

we will be interested only in t between a and x. If we set t = a, then we get

F (a) =
N∑
n=0

f (n)(a)

n!
(x − a)n + B(x − a)N+1.

Set this equal to f (x):

f (x) =
N∑
n=0

f (n)(a)

n!
(x − a)n + B(x − a)N+1.

Since x , a, we can solve this for B, which is a “constant”—it depends on x and

a but those are temporarily fixed. Now we have defined a function F (t) with

the property that F (a) = f (x). Consider also F (x): all terms with a positive

power of (x − t) become zero when we substitute x for t, so we are left with

F (x) = f (0)(x)/0! = f (x). So F (t) is a function with the same value on the

endpoints of the interval [a, x ]. By Rolle’s theorem, we know that there is a

value z ∈ (a, x) such that F ′(z) = 0. Let’s look at F ′(t). Each term in F (t),

except the first term and the extra term involving B, is a product, so to take the

derivative we use the product rule on each of these terms. It will help to write

out the first few terms of the definition:

F (t) = f (t) +
f (1)(t)

1!
(x − t)1 +

f (2)(t)

2!
(x − t)2 +

f (3)(t)

3!
(x − t)3 + · · ·

+
f (N)(t)

N !
(x − t)N + B(x − t)N+1.
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Now take the derivative:

F ′(t) = f ′(t) +

 f (1)(t)1!
(x − t)0(−1) +

f (2)(t)

1!
(x − t)1


+

 f (2)(t)1!
(x − t)1(−1) +

f (3)(t)

2!
(x − t)2


+

 f (3)(t)2!
(x − t)2(−1) +

f (4)(t)

3!
(x − t)3

+ · · ·+
+

 f (N)(t)(N − 1)!
(x − t)N−1(−1) +

f (N+1)(t)

N !
(x − t)N


+ B(N + 1)(x − t)N (−1).

Now most of the terms in this expression cancel out, leaving just

F ′(t) =
f (N+1)(t)

N !
(x − t)N + B(N + 1)(x − t)N (−1).

At some z, F ′(z) = 0 so

0 =
f (N+1)(z)

N !
(x − z)N + B(N + 1)(x − z)N (−1)

B(N + 1)(x − z)N =
f (N+1)(z)

N !
(x − z)N

B =
f (N+1)(z)

(N + 1)!
.

Now we can write

F (t) =
N∑
n=0

f (n)(t)

n!
(x − t)n +

f (N+1)(z)

(N + 1)!
(x − t)N+1.
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Recalling that F (a) = f (x) we get

f (x) =
N∑
n=0

f (n)(a)

n!
(x − a)n +

f (N+1)(z)

(N + 1)!
(x − a)N+1,

which is what we wanted to show.

It may not be immediately obvious that this is particularly useful, so let’s look at
some examples of Theorem 7.2.1 in action.

Example 7.2.2 Suppose x ∈ [−π/2, π/2]. Find a polynomial approximation
for sin x accurate to ±0.005.

Solution Note that if we can compute sin x for x ∈ [−π/2, π/2], then we can
compute sin x for all x. So what we are asking for here is actually quite general!
Once we figure out how to calculate sin x for x ∈ [−π/2, π/2], we can shift any
other value of x into that interval, and thereby compute sin x.

Let’s get started. From Theorem 7.2.1, we have that

sin x =
N∑
n=0

f (n)(a)

n!
(x −a)n+

f (N+1)(z)

(N + 1)!
(x −a)N+1 for some z between a and x.

What can we say about the size of that “error” term? In other words, how big
could

f (N+1)(z)

(N + 1)!
(x − a)N+1

possibly be when z is between x and a? Every derivative of sin x is either ± sin x
or ± cos x, so |f (N+1)(z)| ≤ 1. The factor (x − a)N+1 is a bit more difficult, since
x − a could be quite large. To simplify matters, let’s pick a = 0. We need to
pick N so that ∣∣∣∣∣∣ xN+1

(N + 1)!

∣∣∣∣∣∣ < 0.005.

Since we are only considering the case when x ∈ [−π/2, π/2], we have∣∣∣∣∣∣ xN+1

(N + 1)!

∣∣∣∣∣∣ < 2N+1

(N + 1)!
.
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The quantity on the right decreases with increasing N , so all we need to do is
find an N so that

2N+1

(N + 1)!
< 0.005.

A little trial and error shows that N = 8 works, and in fact 29/9! < 0.0015.
Consequently,

sin x =
8∑

n=0

f (n)(0)
n!

xn ± 0.0015

= x −
x3

6
+

x5

120
−

x7

5040
± 0.0015.

Figure 7.1 shows the graphs of sin x and and the approximation on [0, 3π/2].
As x gets larger, the approximation heads to negative infinity very quickly,
since it is essentially acting like −x7. −4 −2 2 4

−1

−0.5

0.5

1
f (x) = sin x

x

y

Figure 7.1: A plot of f (x) = sin x with a thick line,
placed alongside the dotted line y = x, a dashed

plot of y = x −
x3

6
, and a thin solid plot of y =

x −
x3

6
+

x5

120
. Note how successively higher partial

sums of the Taylor series are hugging the graph of
sin x increasingly well.

We can extract a bit more information from this example. If we do not restrict
the value of x to lie in the interval x ∈ [−π/2, π/2], we still know that∣∣∣∣∣∣∣ f (N+1)(z)

(N + 1)!
xN+1

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ xN+1

(N + 1)!

∣∣∣∣∣∣
because the derivative f (N+1)(z) is either ± sin z or ± cos z. We can use this to prove
the following result.

Theorem 7.2.3 For all real numbers x,

sin x =
∞∑
n=0

(−1)n

(2n + 1)!
x2n+1.

Proof If we can show that

lim
N→∞

∣∣∣∣∣∣ xN+1

(N + 1)!

∣∣∣∣∣∣ = 0
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for each x, then we know that the error term∣∣∣∣∣∣∣ f (N+1)(z)

(N + 1)!
xN+1

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ xN+1

(N + 1)!

∣∣∣∣∣∣ ,
is, in the limit, zero, and so we may conclude that

sin x =
∞∑
n=0

f (n)(0)
n!

xn

=
∞∑
n=0

(−1)n
x2n+1

(2n + 1)!
.

In other words, we will conclude that the sine function is actually equal to its

Taylor series around zero for all x. But how can we prove that the limit is zero?

Suppose that N is larger than |x |, and let M be the largest integer less than |x |.

If M = 0, then xN+1 is small, and even smaller after dividing by (N + 1)!. On

the other hand, if M > 0, then just a bit more work is called for. We compute that

|xN+1|

(N + 1)!
=

|x |

N + 1
|x |

N

|x |

N − 1
· · ·

|x |

M + 1
|x |

M

|x |

M − 1
· · ·
|x |

2
|x |

1

≤
|x |

N + 1
· 1 · 1 · · ·1 ·

|x |

M

|x |

M − 1
· · ·
|x |

2
|x |

1

=
|x |

N + 1
|x |M

M !
.

The quantity |x |M/M ! is a constant, so

lim
N→∞

|x |

N + 1
|x |M

M !
= 0

and by squeezing via Theorem 1.7.2,

lim
N→∞

∣∣∣∣∣∣ xN+1

(N + 1)!

∣∣∣∣∣∣ = 0

as desired.

Essentially the same argument works for cos x, which yields the following.
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Theorem 7.2.4 For all real numbers x,

cos x =
∞∑
n=0

(−1)n

(2n)!
x2n .

And similarly, the function ex is real analytic, meaning that the Taylor series
for ex converges to ex .

Theorem 7.2.5 For all real numbers x,

ex =
∞∑
n=0

1
n!
xn .

Example 7.2.6 Find a polynomial approximation for ex near x = 2 accurate
to ±0.005.

Solution From Taylor’s theorem:

ex =
N∑
n=0

e2

n!
(x − 2)n +

ez

(N + 1)!
(x − 2)N+1,

since f (n)(x) = ex for all n. We are interested in x near 2, and we need to
control the size of |(x − 2)N+1|, so we may as well specify that |x − 2| ≤ 1,
meaning x ∈ [1, 3]. Also ∣∣∣∣∣∣ ez

(N + 1)!

∣∣∣∣∣∣ ≤ e3

(N + 1)!
,



taylor series 133

so we need to find an N that makes e3/(N + 1)! ≤ 0.005. This time N = 5
makes e3/(N + 1)! < 0.0015, so the approximating polynomial is

ex = e2 + e2(x −2)+
e2

2
(x −2)2 +

e2

6
(x −2)3 +

e2

24
(x −2)4 +

e2

120
(x −2)5±0.0015.

This presents an additional problem for approximation, since we also need to
approximate e2, and any approximation we use will increase the error, but we
will not pursue this complication.

Note well that in these examples we found polynomials of a certain accuracy only
on a small interval, even though the series for sin x and ex converge for all x. This
is usually how things work out. To get the same accuracy on a larger interval, what
can you do? Use more terms!
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Exercises for Section 7.2

(1) Find a polynomial approximation for cos x on [0, π], accurate to ±10−3 à
(2) How many terms of the series for log x centered at 1 are required so that the guaranteed

error on [1/2, 3/2] is at most 10−3? What if the interval is instead [1, 3/2]? à
(3) Find the first three nonzero terms in the Taylor series for tan x on [−π/4, π/4], and

compute the guaranteed error term as given by Taylor’s theorem. (You may want to use
Sage or a similar aid.) à

(4) Prove Theorem 7.2.4, that is, show that cos x is equal to its Taylor series for all x by
showing that the limit of the error term is zero as N approaches infinity. à

(5) Prove Theorem 7.2.5, that is, show that ex is equal to its Taylor series for all x by showing
that the limit of the error term is zero as N approaches infinity. à



Review

These problems require various techniques, and are in no particular order. Many
problems may be done in more than one way.

I also encourage you to try your hand at crafting your own problems: mathematics
is more than answer-getting—it is also about problem-posing! Building your own
problems will give you a strong sense of the limitations of the machinery we have
built in this book.
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Exercises for Section 7.2

Determine whether the series converges.

(1)
∞∑
n=0

n

n2 + 4 à

(2)
1

1 · 2
+

1
3 · 4

+
1

5 · 6
+

1
7 · 8

+ · · · à

(3)
∞∑
n=0

n

(n2 + 4)2 à

(4)
∞∑
n=0

n!
8n à

(5) 1 −
3
4
+

5
8
−

7
12

+
9
16

+ · · · à

(6)
∞∑
n=0

1
√
n2 + 4 à

(7)
∞∑
n=0

sin3(n)

n2 à

(8)
∞∑
n=0

n

en à

(9)
∞∑
n=0

n!
1 · 3 · 5 · · · (2n − 1) à

(10)
∞∑
n=1

1
n
√
n à

(11)
1

2 · 3 · 4
+

2
3 · 4 · 5

+
3

4 · 5 · 6
+

4
5 · 6 · 7

+ · · · à

(12)
∞∑
n=1

1 · 3 · 5 · · · (2n − 1)
(2n)! à

(13)
∞∑
n=0

6n

n! à

(14)
∞∑
n=1

(−1)n−1
√
n à
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(15)
∞∑
n=1

2n3n−1

n! à

(16) 1 +
52

22 +
54

(2 · 4)2 +
56

(2 · 4 · 6)2 +
58

(2 · 4 · 6 · 8)2 + · · · à

(17)
∞∑
n=1

sin(1/n) à

Find the interval and radius of convergence; you need not check the endpoints of the intervals.

(18)
∞∑
n=0

2n

n!
xn à

(19)
∞∑
n=0

xn

1 + 3n à

(20)
∞∑
n=1

xn

n3n à

(21) x +
1
2
x3

3
+

1 · 3
2 · 4

x5

5
+

1 · 3 · 5
2 · 4 · 6

x7

7
+ · · · à

(22)
∞∑
n=1

n!
n2 x

n à

(23)
∞∑
n=1

(−1)n

n23n
x2n à

(24)
∞∑
n=0

(x − 1)n

n! à

Find a series for each function, using the formula for Maclaurin series and algebraic
manipulation as appropriate.

(25) 2x à
(26) ln(1 + x) à
(27) ln

(1 + x

1 − x

)
à

(28)
√

1 + x à
(29)

1
1 + x2 à

(30) arctan(x) à
(31) Use the answer to the previous problem to discover a series for a well-known mathematical

constant. à





Epilogue (or. . . what happens to Harry?)

The worst part about reading a great3 novel is that last page. The book gets thinner 3 Or even a bad novel.

and thinner, and then, poof! Not just the characters, but the whole world that the
author has crafted for them is gone! And how frequently I want to stay in that world
just a bit longer.

Humanity has found an antidote to novel-endings; this antidote is the sequel.

With a name like “Calculus Two” you might be getting the idea that there is a
Calculus Three, and who knows. . . maybe!

A-hundred-and-some-odd4-pages ago, I pointed out that reading mathematics 4 Or even.

is not the same as reading a novel. This book is done, but you are not. There is
more mathematics yet to learn about, and more mathematics yet to create. And
I don’t mean to say that you should write go and write fan fiction. I’m no author,
and you are no mere reader. You have worked through the exercises, you have
thought about this material in your own way—so you are the author of your own
understanding, and you must keep writing.

—the so-called “author”





Answers to Exercises

Answers for 1.8

1. 1 3. 0 4. 1 5. 1 6. 0

Answers for 2.7

1. lim
n→∞

n2/(2n2 + 1) = 1/2 2. lim
n→∞

5/(21/n + 14) = 1/3 3.
∞∑
n=1

1
n

diverges, so

∞∑
n=1

3
1
n

diverges 4. −3/2 5. 11 6. 20 7. 3/4 8. 3/2 9. 3/10

Answers for 3.1

1. 1 2. 1 3. converges 4. converges 5. converges 6. diverges

Answers for 3.2

1. diverges 2. diverges 3. converges 4. converges 5. converges 6. con-
verges 7. diverges 8. converges 9. N = 5 10. N = 10 11. N = 1687
12. any integer greater than e200

Answers for 3.3

1. converges 2. converges 3. converges 4. diverges 5. diverges 6. diverges
7. converges 8. diverges 9. converges 10. diverges
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Answers for 3.4

Answers for 4.1

1. converges absolutely 2. diverges 3. converges conditionally 4. converges
absolutely 5. converges conditionally 6. converges absolutely 7. diverges 8.
converges conditionally

Answers for 4.2

1. converges 2. converges 3. diverges 4. converges 5. 0.90 6. 0.95

Answers for 6.3

1. R = 1, I = (−1, 1) 2. R = ∞, I = (−∞,∞) 3. R = e, I = (−e, e) 4. R = e,
I = (2 − e, 2 + e) 5. R = 0, converges only when x = 2 6. R = 1, I = [−6,−4] 7.

There are many choices—for instance, see Exercise 5—but
∞∑
n=0

n! · xn works.

Answers for 6.4

1. the alternating harmonic series 2.
∞∑
n=0

(n + 1)xn 3.
∞∑
n=0

(n + 1)(n + 2)xn 4.

∞∑
n=0

(n + 1)(n + 2)
2

xn , R = 1 5. C+
∞∑
n=0

−1
(n + 1)(n + 2)

xn+2

Answers for 7.1

1.
∞∑
n=0

(−1)nx2n/(2n)!, R = ∞ 2.
∞∑
n=0

xn/n!, R = ∞ 3.
∞∑
n=0

(−1)n
(x − 5)n

5n+1 , R =

5 4.
∞∑
n=1

(−1)n−1 (x − 1)n

n
, R = 1 5. log(2) +

∞∑
n=1

(−1)n−1 (x − 2)n

n2n
, R = 2 6.

∞∑
n=0

(−1)n(n+1)(x −1)n , R = 1 7. 1+
∞∑
n=1

1 · 3 · 5 · · · (2n − 1)
n!2n

xn = 1+
∞∑
n=1

(2n − 1)!
22n−1(n − 1)! n!

xn ,

R = 1 8. x + x3/3 9.
∞∑
n=0

(−1)nx4n+1/(2n)! 10.
∞∑
n=0

(−1)nxn+1/n!
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Answers for 7.2

1. 1 −
x2

2
+
x4

24
−
x6

720
+ · · ·+

x12

12!
2. 1000; 8 3. x +

x3

3
+

2x5

15
, error ±1.27.

Answers for 7.2

1. diverges 2. converges 3. converges 4. diverges 5. diverges 6. di-
verges 7. converges 8. converges 9. converges 10. converges 11. con-
verges 12. converges 13. converges 14. converges 15. converges 16.
converges 17. diverges 18. (−∞,∞) 19. (−3, 3) 20. (−3, 3) 21. (−1, 1)
22. radius is 0—it converges only when x = 0 23. (−

√
3,
√

3) 24. (−∞,∞)

25.
∞∑
n=0

(ln(2))n

n!
xn 26.

∞∑
n=0

(−1)n

n + 1
xn+1 27.

∞∑
n=0

2
2n + 1

x2n+1 28. 1 + x/2 +

∞∑
n=2

(−1)n+1 1 · 3 · 5 · · · (2n − 3)
2nn!

xn 29.
∞∑
n=0

(−1)nx2n 30.
∞∑
n=0

(−1)n

2n + 1
x2n+1 31. π =

∞∑
n=0

(−1)n
4

2n + 1
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Index

p-series, 63

alternating harmonic series, 93
arithmetic progression, 18
associativity, 47

Basel problem, 62

Cauchy condensation test, 59
chiastic rule, 48
commutativity, 47
comparison test, 57

limit, 101
condensed series, 59
convergent sequence, 23
convergent series, 40

distributive law, 45
divergence test, 52
divergent sequence, 23
divergent series, 40

geometric series, 41
geometric progression, 19

harmonic series, 54
alternating, 93

infinite series, see series
integral test, 76
interval of convergence, 109

limit comparison test, 101
limit of a sequence, 23

Maclaurin series, 119

p-series, 76
partial sums, 39
power series, 106

radius of convergence, 109

sequence, 12, 14
bounded, 34
bounded above, 34
bounded below, 34
convergent, 23
decreasing, 33
divergent, 23
equality, 16
increasing, 33
index, 14

initial, 14
monotonic, 33
non-decreasing, 33

non-increasing, 33
of partial sums, 39
subsequence, 26
term, 14

series, 12
p-series, 76
absolute convergence, 90
alternating harmonic, 93
condensed, 59
conditional convergence, 91
convergent, 40
divergent, 40
geometric, 41
harmonic, 54
integral test, 76
interval of convergence, 109
Maclaurin, 119
radius of convergence, 109
Taylor, 123
telescoping, 50
value of, 40

subsequence, 26

Taylor series, 123
telescoping series, 50

value of series, 40
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